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Abstract

English Version

Combining a highly scalable and customisable process, with very accurate prediction

results using machine learning models, is what this work proposes. The customisation

is guided by what information the user seeks to gain from the process. This makes the

process applicable for a variety of sectors, such as Banking & Finance, Marketing and

urban development among others. It evaluates the process of using self-acquired data

from an online real estate platform, gained from deploying a custom web scraping

algorithm. This data is then combined with several spatial features for predicting the

base rent for apartments on a validation dataset. The analysis and predictions are

made for rental apartment listings within the Hanseatic City of Hamburg. The spatial

features originate from sources other than that of the apartments data and have to

be adapted to it first, therefore. Predictions are made using state of the art machine

learning models, in the form of a Lasso Regression model and a XGBoost Regressor

model. The Hyperparameter Optimisation techniques grid search and random search

are compared, during the optimisation process. The focus is on maximising prediction

accuracy of the models. The best scores, expressed in RMSE, are 190.68 for the Lasso

and 115.39 for the XGBoost Regressor. Differences in complexity and interpretability

between the models are discussed and associated with it, the strengths and weaknesses

of the respective model are pointed out.
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Abstract

German Version

Die Kombination eines hoch skalierbaren und anpassbaren Prozesses mit sehr präzisen

Vorhersageergebnissen unter Verwendung vonMachine LearningModellen ist der vor-

geschlagene Ansatz dieser Arbeit. Die Anpassung richtet sich danach, welche Informa-

tionen der Benutzer aus dem Prozess gewinnen möchte. Dadurch ist der Prozess für

eine Vielzahl von Sektoren anwendbar, wie zum Beipiel Bankwesen & Finanzen, Mar-

keting und Stadtentwicklung. Es bewertet den Prozess der Verwendung von selbst

gewonnenen Daten, die durch den Einsatz eines eigenen Web-Scraping-Algorithmus

von einer Online-Immobilienplattform gewonnen wurden. Diese Daten werden dann

mit mehreren räumlichen Merkmalen kombiniert, um die Kaltmiete für Wohnungen

auf einem Validierungsdatensatz vorherzusagen. Die Analysen und Prognosen wer-

den für Mietwohnungsangebote in der Hansestadt Hamburg erstellt. Die räumlichen

Merkmale stammen aus anderen Quellen als denen der Wohnungsdaten und müssen

daher zunächst an diese angepasst werden. Die Vorhersagen werden mit Hilfe mod-

ernster Machine Learning Modelle in Form eines Lasso-Regressionsmodells und eines

XGBoost Regressor-Modells getroffen. Die Hyperparameter Optimierungstechniken

Grid Search und Random Search werden während des Optimierungsprozesses ver-

glichen. Der Fokus liegt auf der Maximierung der Vorhersagegenauigkeit der Mod-

elle. Die besten Ergebnisse, ausgedrückt in RMSE, sind 190,68 für das Lasso und

115,39 für den XGBoost Regressor. Unterschiede in der Komplexität und Interpretier-

barkeit zwischen den Modellen werden diskutiert und damit verbunden, die Stärken

und Schwächen des jeweiligen Modells aufgezeigt.
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1 | Introduction

Motivation Why is it of any importance, if using open source data enables economic

actors to make predictions regarding the base rent (Kaltmiete), in a similar way to how

is done here? Are there not enough official reports and statistics regarding this matter

already? These questions are legitimate and so they should be answered.

Given that this work was entirely done using the open source language Python [89], it

can be said that the open source nature gives a high degree of independence regarding

which tools are used and how they are used. Further the diversity and the number of

tools available for a programming language like Python, is hard to match for a single

commercial software solution. This kind of open source approach makes it possible

to analyse city dynamics, such as the prediction of base rent, rent increases over time,

socioeconomic dynamics, the proximity to amenities such as hospitals or public trans-

port, for different districts of the city. These results can then be compared to one

another or they can be tested for their predictive importance regarding the prediction

of the dependent variable of interest, using machine learning techniques. The impor-

tance of it then is, that it can enable an economic actor to conduct their own analysis,

customised to give the information they are looking for. This nevertheless depends

on the information that is available. This in particular used to be a limiting factor for

such independent research but has changed with the emergence of open source data

specifically [7]. Considering the question whether there is not enough official informa-

tion available already, the answer is that it depends on the country the research area

is in [64] and the specific research question. In their paper, (Rondinelli and Veronese

2011) write:

Empirical analysis on rent dynamics is still rather scant for the Euro area,

mainly because of a lack of data. [64]

They note that Germany is the exception though, with a sufficient amount of data

available for research [64], as demonstrated by (Hoffmann and Kurz 2002) [35]. Since

2011 this might have changed, nevertheless this issue is described in the literature and

especially for China there are reports that there is a lack of data for city dynamics and

land use analysis [21, 37, 91]. Therefore, one finds a high concentration of these open

1



1 Introduction

source techniques together with the acquisition of data by means of web scraping or

by using image recognition algorithms to analyse satellite images [21, 37, 91]. For an

organisation or company, for example in the Banking & Finance sector, looking for

information regarding a non standard metric not found in official reports, the need for

these independent and open source approaches, regardless of the quality and quantity

of official statistics, is a given. From the newspaper article in the International Business

Times UK, (Deep learning and big data 2017):

In the world of finance, the new data paradigm entails applying predictive

analytics to new datasets that are collected from non-traditional financial

data sources to discover novel and consistently predictive features, and po-

tentially useful patterns about the entity in question beyond what is easily

available from traditional financial data sources. [24]

Many of the points made in this quote, are part of the here proposed process and are

described in the following chapters. In this work it is demonstrated how official statis-

tics in the form of geospatial attributes can be joined with the existing dataset of the

project. This statement from (Barham 2017), originally made regarding characteristics

of big data, can be applied here as well:

Collecting the right kind of data: This task is really tricky, getting and trying

to aggregate all the available data means time and resources costs, however,

capturing minimal amount of data, could mean losing hidden values that

were not known before it was captured (Tole 2013) (Naimi and Westreich

2014) (Detwiler 2015). [10]

The conclusion then is that, as long as there are features not included in any official

report that are possibly relevant, that might help a company gain a competitive edge,

a process similar to the one explored in this work is of relevance.

1.1 Scope & Research Questions

The main goal of this work is to predict the value of base rent (dependent variable) on

unseen data using a set of predictive variables (regressors). The scope of this work is

the urban area of the Hanseatic City of Hamburg (Hamburg). In particular, it concerns

rental apartments and not commercial properties or short-term rentals, as is the case

with Airbnb, for example.

2



1 Introduction

The first part of the research question is how these regressors can be constructed from

the following independent data sources:

• Geospatial features (based on the location of the listing):

– Exposure to street noise [46]

– Distance to the next subway station (U-Bahn Station) [48]

– Distance to the next suburban train station (S-Bahn Station) [47]

– Status class of the statistical area the listing is in [78]

– Socio-spatial trend for the statistical area the listing is in [78]

• Core variables from listings on the real estate portal Immobilienscout24.de [39]

The second part is concerned with the question, if using Hyperparameter Optimisation

on the models XGBoost and Lasso improves prediction results compared to using their

default parameters.

Core Values

Web Scraping

Machine Learning
Models

Spatial Features

Open Source Data

Predict
Base Rent

GPS
Coordinates

Structural
Features

Spatial
Join

Figure 1.1. Figure showing the data sources web scraping and open source data together. These
inputs are used for training the machine learning models and all parts together make it possible to
predict the variable base rent on unseen data. The overlapping areas represent the links between
the different parts.
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1 Introduction

The overlapping parts in Figure 1.1 describe the links between the three parts. In detail

going clockwise from Spatial Join: A Spatial Joinwas used to connect the environmental

data with the core variables of the listings from the web scraping. All spatial features

are given as inputs to the machine learning models. The one associated closest with

each listing is its GPS coordinates [31]. The models get the structural variables for each

listing in the form of the core variables. The inputs from the clean and completely

spatially joined data sources make it possible to train and ultimately predict the value

of base rent on unseen data for apartments within Hamburg.

1.2 Outline

An outline of Chapters 2 to 8 is given. It gives a short summary of the contents of each

Chapter.

Chapter 2 gives an overview of the existing literature regarding the prediction of

real estate prices in Section 2.1. Literature with a focus on describing city dynamics

and structure using similar methods is also included. It is specifically mentioned how

data from the Internet and especially open source data have already been used in the

existing literature. The focus is on literature that includes both structural and envi-

ronmental variables as inputs to the model. In this context, the Hedonic Price Model is

described and applied to this situation in Section 2.2. An introduction to Hyperparam-

eter Optimisation with references in the literature is also part of Section 2.2.

Chapter 3 specifies the here found prediction problem in Section 3.1 and the model

selection in Section 3.2 together with a short description of each model. It continues

with the collection of the data in Section 3.3, describing the web scraping algorithm

and the core variables obtained by it. Section 3.4 describes the cleaning steps used to

transform the data into a clean structure for further analysis. In Section 3.5, the external

variables are described together with the process of integrating them into the existing

dataset. Section 3.6 is the last section of the chapter. It gives an overview together

with a description of all the final variables that are used in the following chapters.

This table serves as a reference as well, giving the reader information about what each

variable describes if needed at any point.

Chapter 4 is about the visualisation of the variables in the dataset. It begins with an

explanation of the univariate distribution for each variable in the dataset in Section 4.1.

The correlations found between the variables is discussed in Section 4.2. In the same

section, the noise data is analysed for both day and night and its impact on base rent

4



1 Introduction

specifically. What follows in Section 4.3, is a detailed heat map of the distribution of

variable base rent by statistical area, plotted onto a map of Hamburg. The last section

is Section 4.4. The general preprocessing done for machine learning is explained and

it discusses standardisation of the data, for the machine learning part that follows in

Chapter 5.

Chapter 5 documents the process of fitting, optimising and interpreting the models.

First, the evaluation metric used here for measuring the accuracy of the models, is ex-

plained and important declarations are made. The following Section 5.1 deals with the

Hyperparameter Optimisation. The Lasso model is first optimised, then the XGBoost

model. An overview of the RMSE values by model, method and set is found in Sec-

tion 5.2. The coefficients of the Lasso are interpreted in detail in Section 5.3 and the

feature importance plot of the final XGBoostmodel is described in Section 5.4.

Chapter 6 reviews the results from Chapter 5 and compares the results of both mod-

els in Section 6.1. The results of the Hyperparameter Optimisation are summarised

in Section 6.2. Finally, the limitations are discussed, and possible future work is pre-

sented in Section 6.3.

Chapter 7 discusses to what extent the results obtained answer the research ques-

tions posed in Chapter 1 and gives a conclusion in this respect. As part of this, the

integrated geospatial features are checked for their relevance with regard to the pre-

diction of the base rent in Section 7.1. Section 7.2 gives the answer to the question

posed in Chapter 4, whether standardising the data can aid better prediction results.

It then presents, the final accuracy scores for the base rent predictions of both mod-

els. Subsequently, the Hyperparameter Optimisation procedure for both models is

discussed in review and conclusions are drawn.

Chapter 8 is the final chapter of this work. It reviews the methods and the thinking

process used during the here proposed process, in Section 8.1. Section 8.2 concludes

this work with the identification of economic sectors and fields in which the process

presented here can be applied and for which it is therefore relevant. Exemplarily,

possible practical applications are also mentioned.
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2 | Related Work & Foundation

This chapter gives an overview of the existing literature regarding the prediction of

real estate prices in Section 2.1. Literature with a focus on describing city dynamics

and structure using similar methods is also included. It is specifically mentioned how

data from the Internet and especially open source data have already been used in the

existing literature. The focus is on literature that includes both structural and envi-

ronmental variables as inputs to the model. In this context, the Hedonic Price Model

is described and applied to this situation in Section 2.2. An introduction to Hyperpa-

rameter Optimisation with references in the literature is also part of Section 2.2.

2.1 Related Work

Geospatial Analysis

There are many different factors involved in determining the value, of a property. For

clarification, value here is equivalent to price, it can be the price for a house or apart-

ment or the monthly base rent. This value is the equilibrium value, as written in the

paper (Sirmans et al. 1991):

The standard approach to modeling housing markets is to employ the fa-

miliar hedonic pricing framework exposited by Rosen (1974) to estimate

the equilibrium value of houses as functions of their specific objective

characteristicswithout drawing out explicit connections to real estate bro-

ker service markets. [72, 65]

The following takes up the specific objective characteristics found in the quotation and

explains them in more detail.

They can be grouped by their associated level [91]. The first level being the household

level or the set of properties of an apartment. These are the main attributes of the

apartment such as the living space, number of rooms, whether it has a fitted kitchen

among others. (Sirmans et al. 1991) [72] call these features physical characteristics, in

their case for houses, and they use the variables: "Living area", "Other square footage",

6



2 Related Work & Foundation

"Number of bedrooms", "Number of baths", "Age of house". These variables are in-

cluded here as well, except for "Other square footage". It was not applicable in this

case. There are studies that take into account the socioeconomic sphere with variables

such as, the economic sectors the tenants work in, the household income. This data can

come from survey data, as is the case for (Wu et al. 2013) [91]. These variables were not

available for this work, so they are not included. The second level and above contain

variables from the zone that the apartment is in. There is an abundance of variables

that possibly affect the value of the dependent variable at the zone level. Such as, what

facilities are close to the apartment and the effect the distance between apartment and

facility has on the dependent variable. With that comes the risk of an omitted variable

bias. This can cause a very strong bias in a Hedonic Price Model [57]. It can make

it impossible to estimate the effect that a regressor has on the dependent variable [4].

Common variables from the zone level and above include proximity of the property to

the next minor or major access road [4, 55, 91], proximity to a school [55, 91], distance

to the city center [4, 55, 64, 91]. Many of these variables are only available through the

widespread use of online platforms for rental type and purchasing or selling transac-

tions [21, 36, 62]. A technique used in the papers (Chen et al. 2016) and (Hu et al.

2016) for areas in China, is using Landsat Images (satellite imagery of the ground) and

open source map data to analyse rent and city dynamics [21, 37].

2.2 Fundamentals

Rent Prices and House Prices are different values and qualities of real estate ob-

jects being studied in the literature and often times the Hedonic Price Model is used in

studies that either focus on the value of a property given by its sale price or estimated

sale price that is derived from the inherent qualities of the property and its features

from the zone level. Less often the model is used to explain rental dynamics. This

difference is mentioned, because in this work only the effect on the rent of an apart-

ment is studied. The theory of the Hedonic Price Model is applicable in this case as

well, since there is a solid and persistent relation between the price and the rent of a

property [44].

The Hedonic Price Model

The Hedonic Price Model is a model of product differentiation based on the

hedonic hypothesis that goods are valued for their utility-bearing attributes

or characteristics. [65]

Specifically, it describes a relation between the value of the base rent and the aforemen-

7



2 Related Work & Foundation

tioned main attributes that are of structural nature and closely linked to the physical

attributes and amenities the apartment offers together with the features provided by

the zone around the apartment.

Spatial Autocorrelation in this context is referred to as the "coincidence of value

similarity with locational similarity" [5]. In this case it means that apartments that

are close to one another tend to have similar values for the base rent per square meter

variable. This variable normalises the value of the base rent, so that the base rent

of different apartments can be compared regardless of their living space values. The

living space tends to positively correlate with the base rent value, as will be discussed

later in Chapter 4.

Spatial Heterogeneity describes the phenomenon, that apartment rent prices are de-

pendent on the location the apartment is in. These differences can have many causes

and it is related to such factors as the distance to the city centre from the apartment,

the neighbourhood the apartment is in. Other factors can be, the exposure to noise

or its proximity to the next subway or suburban train station. Spatial heterogeneity

is found when houses with similar features regarding, for example lot size, number

of rooms, interior quality, number of bedrooms have different sale prices in different
parts of the city [8, 28, 56].

Hyperparameter Optimisation

To lay the foundation of what Hyperparameter Optimisation is, as well as to give an

overview of commonly used techniques, an introduction is given. A definition of what

hyperparameters are and what some of their characteristics are, is referenced from

(Bergstra et al. 2015):

Most implementations of machine learning algorithms have a set of config-

uration variables that the user can set which have various effects on how

the training is done. Often there is no configuration that is optimal for all

problem domains, so the best configuration will depend on the particular

application. These configuration variables are called hyperparameters. [12]

The optimisation of these parameters is of particular interest, as "often there is no

configuration that is optimal for all problem domains", as stated in the quotation. It

is about tuning these parameters, so they are optimal for the specific problem. Setting

the values of these hyperparameters used to be mainly a manual task, but has become

a domain for algorithm based solutions over the last years, according to (Bardenet et

al. 2013):

8



2 Related Work & Foundation

Hyperparameter learning has traditionally been a manual task because of

the limited number of trials. Todays computing infrastructures allow big-

ger evaluation budgets, thus opening the way for algorithmic approaches. [9]

Popular Methods for Hyperparameter Optimisation A grid search is a method where

the user passes a grid with an exhaustive set of values to be tested to the algorithm as

input. A set of values is passed on as input for the grid search algorithm, for each

parameter to be optimised during the grid search. Here, the grid search was imple-

mented for optimising the hyperparameters of the models, in an effort to better their

prediction results in Chapter 5. The underlying problem with the grid search is, that

each hyperparameter can have a large value range for its possible values. An example

is a parameter with a continuous value range between 0 and 1. This range containing

all machine numbers between 0 and 1 could not be tested in a grid search, as there are

too many values in this range. Oftentimes only a small subset of all hyperparameters

in a model and only a small subset of the respective value ranges for each parameter

are of relevance for the value of the evaluation metric [11, 13]. However, the num-

ber of models can still become extremely high. Consider 15 hyperparameters and for

illustration purposes assume each one has 40 possible values. If a 5 fold cross valida-

tion is used to evaluate the models, the total number of models to build is given by

15 ·40 ·5 = 3000. To put it into perspective, with an estimated time of 0.68 seconds that

it takes to build one model on the here used machine, to build all 3000 models would

take 3000 · 0.68 = 34minutes. While more computational power in the form of better

hardware is a solution up to a certain point, using one of the following methods can

be comparably more efficient [11, 13, 59]. Considering these weaknesses of the grid

search procedure, there are alternatives available.

Among themain alternatives used for Hyperparameter Optimisation, are the following

algorithms. The random search [11], which is used here and explained in detail in Sec-

tion 5.1. Other more complex approaches include Bayesian Optimisation [38, 59, 77]

and iterated F-racing [53, 14].

9



3 | Methods & Data

A brief specification of the problem is given in Section 3.1 and the underlying me-

chanics of the models used here are briefly described in Section 3.2. It continues with

the collection of the data in Section 3.3, describing the web scraping algorithm and the

core variables obtained by it. Section 3.4 describes the cleaning steps used to transform

the data into a clean structure for further analysis. In Section 3.5, the external variables

are described together with the process of integrating them into the existing dataset.

Section 3.6 is the last section of the chapter. It gives an overview together with a de-

scription of all the final variables that are used in the following chapters. This table

serves as a reference as well, giving the reader information about what each variable

describes if needed at any point.

3.1 Specification of the Problem

The aim is to predict the value of the base rent variable and to try to identify impor-

tant variables for the value of base rent. This requires relevant independent variables

which deliver consistent, meaningful and standardised values. These should then be

used to train the model to predict the dependent variable in order to finally estimate

the base rent for apartments, unknown to the model.

It is the estimation of a dependent variable that has continuous values that can be

ordered and compared with one another. A single numerical value is what is being

estimated by the model. In order to make a statement about the effect that individual
independent variables have on the dependent variable, oftentimes several assump-

tions regarding data and residuals are made a priori. Whether these assumptions are

fulfilled can only be assessed once the data is clean and only to a limited extent in

general.

10



3 Methods & Data

3.2 Model Selection

It should be noted that both models are supervised learning models, meaning that they

are "taught by example". This entails that the models get as inputs all the variables of

the final dataset, except for the base rent variable. This variable is to be predicted and

the method used for fitting the data is a stochastic gradient descent in the case of the

XGBoostmodel [32, 45] and a coordinate descent [73] for the Lasso.

Lasso The first model used in this work is the Lasso Regression Model. Lasso is an

acronym for: Least Absolute Selection and Shrinkage Operator [84]. It was first intro-

duced in the paper (Tibshirani 1996) [83]. It is trained with ℓ1 as regulariser in its

default configuration with α = 1. What this means is that the sum of the absolute

values of the coefficients (w ) is added to the ordinary least squares term [33, 85, 84].

The complete term is to be minimised regarding w by the model during coordinate

descent [73]. The objective function to minimise is:

min
w

1

2n
||Xw − y ||22+α||w ||1

Euclidean Norm : ∥x∥2 =

 n∑
i=1

|xi |2

1/2

, ℓ1-Norm : ∥x∥1 :=
n∑
i=1

|xi |

With n the number of observations, X the vector of the independent variables with co-

efficients vector w and y the dependent variable. The model solves the minimisation

problem regarding w imposed by the added penalty term α||w ||1 ≥ 0 [1]. Where α≥ 0
is a constant and ||w ||1 is the ℓ1-Norm ofw [32]. The value ofα can be altered andα= 1

gives the ℓ1-Norm of w and thus tends to shrinkmany coefficients. The applied shrink-

age gives coefficients with values that are either equal to zero or close to zero (sparse

coefficients) [34, 86, 84, 85]. The lower bound is α = 0, which eliminates the penalty

term completely and gives an ordinary least squares linear regression [73]. Hence the

usage of the model not only for predictions, but also as a feature selector with α > 0.

A special case where ordinary least squares linear regression fails and Lasso is used

instead, is the following. Consider X as a matrix X ∈ Rn×p with the number of rows

given by n (number of observations) and the number of columns given by p (number

of regressors). Lasso is frequently used when there are far more regressors than there

are observations, that is if p≫ n [33, 63, 71]. As with a general regression model, the

assumption is that the observations are either independent or that the yis are condi-

tionally independent given the xi js [84].
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3 Methods & Data

XGBoost The second model used here is the GXBoost model. XGBoost stands for eX-

treme Gradient Boosting and it is an implementation of gradient boostingmachines [19].

It belongs to a broader collection of tools under the umbrella of the Distributed Ma-

chine Learning Community (DMLC) [25]. A short explanation of how gradient boost-

ing works is given based on the book of (Kuhn and Johnson 2013) [45]. The three main

elements are:

1. A loss function that must be optimised (here: mean squared error)

2. A weak learner that makes predictions (here: regression trees)

3. An additive model, such that weak learners can be added to minimise the loss

function (boosting)

The loss function depends on the type of problem at hand and since a regression type

of problem is given here, a mean squared error function is used inside the model. In

gradient boosting decision trees are used as weak learners in general, and regression

trees more specifically if a regression problem is given. These give a floating-point

number as output for each leaf and the output of all leaves is summed up to give the

final score of one tree. As illustrated in Figure 3.1, the output values of the individual

trees are summed up at the end to give the final value. The construction of the trees

happens in a greedy manner. A greedy algorithm is characterised by only considering

which next step has the highest instant reward, for the evaluation of which step to take

next [49].

Constraints are used to keep the trees being weak learners. A characteristic of the

model is that trees are added to the model, one at a time and existing weak learners

are not altered. A stochastic gradient descent is used to minimise the loss, so when

adding a new tree, it must reduce the loss, follow the gradient. The output for the new

tree is then added to the output of the existing trees in an effort to improve the overall

performance of the model. There are two ways this can come to an end. 1. The fixed

number of trees is reached. 2. The addition of a new tree does not better the result of

the model on a validation dataset or the loss function reaches an acceptable level.

These are the main elements of the ensemble method gradient boosting. One differ-
ence of XGBoost compared to the classical gradient boosting algorithm is its ability to

use the available computational resources very well, and specifically its ability to par-

allelise parts of the training process during fitting of the data [19]. One consequence

of this is that the trees are not added individually after each iteration as described in

the boosting process, but sequentially as part of the parallelisation of the process [19].

A formal, more mathematical definition of the main elements of the XGBoost algo-

rithm follows. The following is a mere reproduction with an adaptation of the labels

12
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of the occurring variables, in order to establish uniformity with the previously de-

clared variables, during the description of the Lassomodel. It is about the description

of the XGBoost algorithm as can be found in the paper (Chen and Guestrin 2016) [19],

Section "2.1 Regularized Learning Objective":

For a given dataset with n observations and p features D = {(xi ,yi)}, (|D|=
n,xi ∈ Rp,yi ∈ R), a tree ensemble model uses K additive functions to pre-

dict the output.

ŷi = ϕ(xi) =

K∑
k=1

fk(xi), fk ∈ F ,

with F = {f (x) = wq(x)}, (q : Rm → T,w ∈ RT ) the space of regression

trees. Here q gives the structure of each tree that maps an observation to

the corresponding leaf index. T denotes the number of leaves in the tree.

Each fk corresponds to an independent tree structure q and leaf weights w .

Unlike decision trees, each regression tree contains a continuous score on

each of the leaves. It is given by wi for the i-th leaf. What this means is

that for a given observation the decision rules, given by q, of the tree are

used and their respective outputs then are projected to the leaves. These

scores (wi ) for each leaf are summed up and the final score (w ) is the result.

To learn the set of functions used in the model, the following regularized

objective is minimised.

L(ϕ) =
∑
i

l (ŷi ,yi)+
∑
k

Ω(fk)

whereΩ(f ) = γT +
1

2
λ∥w∥2

Here l is a differentiable convex loss function that measures the difference
between the prediction ŷi and the target yi . The second term Ω penalises

the complexity of the model. The additional regularisation term helps to

smooth the final learnt weights to avoid over-fitting.

One point tomention is that the number of parameters, as counted by the author on the

official website [92], that the XGBoostmodel has, is 22. While not all might be relevant

and some might have only one possible value for a given problem, the settings of these

parameters can be of great importance concerning the accuracy of the predictions [22,

29, 30]. The fact that there are correlations between some of them regarding their

settings, should be acknowledged when doing Hyperparameter Optimisation [9, 13,

20, 32].
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Figure 3.1. An exemplary illustration of how the scores in the respective leaves of Tree 1 and Tree
2 are added up to give the final score.

3.3 Collection of Data

The listings dataset is created with data from a large real estate portal Immobilien-

scout24 [39]. The portal is amongst the most popular in Germany. Specifically, from

its Hamburg rental listings section is where the web scraping algorithm collected the

core data for this work. The data is from the period between July 2016 and November

2018.

Web Scraping is an integral part of this thesis, since it is the tool used to acquire all

data about the apartments and their main attributes. One definition of the term web

scraping algorithm is:

A more recent variant of the web crawler is the web scraper, which looks

for certain kinds of information - prices of particular goods from various

online stores for instance - and then aggregates it into newweb pages, often

using a database. [3]

It is important to understand that the goal is to acquire the values of specific variables

contained in the HTML code of each listing. The algorithm has to be written, so that it
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locates these variables reliably and extracts the corresponding values for each instance

(listing). Detailed analysis of the extracted variables follows in Chapter 4. Here, a brief

description of the most important tools used in the process is given.

A package that lets the user send HTTP requests and that captures the response. A

HTML Parser to navigate and search the acquired HTML tree with its many tags. It is also

the main tool to find the attribute-value pairs in the HTML code that hold the values

of the desired variables. If the correct tag is specified, the value of the associated

Figure 3.2. The steps of collecting the data with the web scraping algorithm.

variable is the output. Some script tags of type <script type="text/javascript">

have nested JSON elements in them, which also have an attribute-value pair structure.

However, extracting values from these nested JSON elements was not as easy as with

HTML. The problem is that they can not be reliably separated from the surrounding text

in the script tag. The starting index varies depending of the content before the JSON

element and the ending index varies as well, depending on the content of the JSON

element. Without being able to extract the JSON element with its associated structure,

it is unstructured text. In order to get reliable results for the large number of listings

on the platform, regular expressions were used. That is, after the conversion of HTML

to string format. These are the main tools used here, all from within Python.
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The acquisition of the data for the predictions is done using a self-written web scraping

algorithm. The structure of the algorithm follows a simple principle in order to extract

all the relevant data from every single listing in the set of listings. Figure 3.2 illustrates

the process for one loop of twenty listings. The terms used here to explain the process

are the same as the ones used in Figure 3.2. The algorithm collects data from roughly

12000 Single Listings (Step 3. Figure 3.2) and 610 Pages with Listings (Step 1. Figure

3.2), each with 20 Single Listings. The steps are: 0. get the URL Root Domain (Start

in Figure 3.2). 1. get the URL of the first/next page with the URL of 20 Listings (Step

1. Figure 3.2). 2. get URL of each Single Listing, with 20 per page (Step 2. Figure

3.2). 3. go to URL of each Single Listing, one by one (Step 3. Figure 3.2). 4. Extract

the specified values from each Single Listing (Step 4. Figure 3.2). 5. Temporarily Save

Values from the previous step in a Dictionary (Step 5. Figure 3.2). 6. Repeat steps 1

to 5 for all Pages and Listings. Save all values from step 4 in the Dictionary for each

Single Listing. 7. Convert the Dictionary with the values to a csv File (Step 6. Figure

3.2). A list of all received variables can be found in Table 1 of the Annex.

Table 3.1. Names of the variables used in the further steps in the
left column with a description of each one in the right column.

Variable Description

kitchen Listing has a fitted kitchen yes/no

elevator Building has an elevator yes/no

ancil_costs Costs that are not included in the base rent (Eur)

lat Latitude value of the listing

lng Longitude value of the listing

const The year the building was constructed

base_rent The base rent of the listing (Eur)

sqm The living space of the listing (m2)

no_room The number of rooms the listing has

balcony Listing has a balcony yes/no

floor The floor the listing is on inside the building

number_pics The number of images uploaded for the listing

dl_speed The internet download speed (mbit/s)

ul_speed The internet upload speed (mbit/s)

time_gap The time (days) the listing was online

In Table 3.1, only the variables ultimately used are listed for further reference.
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3.4 Preparation of Data

In the following section the steps taken to transform the raw data into clean data,

suitable for detailed analysis and in the right format for training the models with it, are

explained. To aid the understanding of what characteristics tidy data has, a definition

follows. A "tidy" dataset fulfils the following principles [50, 90]:

1. Each variable forms a column

2. Each observation forms a row

3. Each value has its own cell

Data Types Tidy datasets enable quick data analysis and visualisation. Further

most machine learning models do not cope well with missing data, outputting an er-

ror message only. As a result, all the data in a given column have the same data type,

that is appropriate for the variable of the column. The most common data types in this

work are: 1. string or character (e.g. "base rent","well kept") 2. numeric (e.g. 2, 5.7,-15)

3. datetime64 (e.g. "2018-08-01").

First Cleaning Steps To gain a tidy dataset several case dependent cleaning steps

have to be performed on the raw dataset from the web scraping part. The cleaning

steps used here for the core variables are illustrated in Table 3.3. Here, a description

of these steps is given. The split step refers to splitting the content of a cell, by a

fixed character such as "," or white space " ". Splitting on white space was used for

the variable plz for example, as shown in Table 3.2. Stripping is removing any kind

Table 3.2. Illustration of variables before and after the cleaning
process.

Variable Variable before Variable after

lat [’lat: 53.547867859440416,’] 53.547867859440416

plz 20459 Hamburg Neustadt 20459

of specified characters before or after the data of interest. It overlaps with the extract

method where specific characters or types are extracted from the entry. This was used

to get the latitude and longitude values, as shown in Table 3.2 for variable latitude

(lat). Replace was mainly used to delete unwanted white space or change separators.

Oftentimes the decimal separator used in raw data is comma (","). That is a problem,

since for this analysis a float type number must have a dot (".") as a separator. Interest-

ingly all the variables from parts of the HTML data that can not be seen on the actual
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webpage of the listing, are already in this format and all the ones visible to the visitor

have comma as a separator.

Table 3.3. Shows core variables, cleaning steps and what each variable measures once cleaned.
The entry "x" indicates that this step was used for processing the variable.

Variable split strip replace extract conversion measures

const x x x x string year built

plz x string area code

lat/lng x float part of location

onlinesince x datetime64 date posted

offlinesince x datetime64 date taken offline

rooms x float number of rooms

pic x integer number of images

elevator x binary elevator yes/no

kitchen x binary fitted kitchen yes/no

download speed x x float internet download speed

upload speed x x float internet upload speed

Type Conversions The raw data have always the format of string. It is appropri-

ate for the values of some variables, mainly of type nominal categorical. An example

is plz. While it contains only numbers, it does not make sense to order its values,

e.g. from small to large. Each unique value represents a geographically bounded area,

each with a variety of different features. Other features of ordinal nature have to be

converted to either integer or float. The conversion is usually the last step in the

cleaning process, since the data have to be in the right format, as seen in Table 3.2 in

the "variable after" column for example. There is a special type of numeric variable

in the form of a binary variable. The domain of these variables di with i ∈ L and L

denominating the set of all listings, is {0,1}. The value of di is 0, if the measured fea-

ture is absent in listing i and 1 if it is present in listing i . This type of variable was

used in the core set of variables, to measure whether the listing has a fitted kitchen

and whether an elevator is in the building (see Table 3.3). For a given listing, the vari-

able measuring whether there is a fitted kitchen in the apartment (kitchen), has value

kitchen= 0 given there is no fitted kitchen and value kitchen= 1, if there is one.

Another type conversion is from string to datetime64. It was used to create the vari-

ables onlinesince and offlinesince. The output is a date and time for each valid

entry in the data series, which then can be used to create a timedelta object. In this

work the timedelta variable measures the time in days that the listing was online on

the platform, before it was unlisted.
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Further Cleaning Steps

Dropped Data All rows consisting of only nan values were dropped, with nan an

acronym for not a number and a placeholder for missing values in the data series. The

same goes for duplicate rows. All negative values were set to nan, apart from variables

that could contain such values.

One of the most important variables is the geolocation of the listing. There are 9421

valid entries in lat and lng which have missing values in identical index values. That

leaves 2902 missing entries. For 59 of these there is address data. Using the geocoder

library with its komoot API [6] with the services of komoot [82], these 59 values were

filled, 9480 entries are valid.

Since there was no way to acquire the remaining missing data of lat and lng coordi-

nates and since imputing the data would possibly corrupt the up to this point valid

data for lat and lng, all the rows with missing values in these two columns were

dropped. As a result, the dataset now consists of 9480 observations. For variable

const all values before the year 1850 were set to missing values. kitchen, elevator

values that were missing were set to 0, as the original variable had either value "ele-

vator" or "kitchen" respectively or nan. Other columns with more than 10% missing

values were dropped, since there was no way to impute the missing values that does

not risk altering the distribution of the data. Missing values were imputed for the

following columns, the first number in brackets is the number of non missing values,

the second is the percentage of missing values in relation to the number of all observa-

tions: const (8743, 7.8), ul_speed (8961, 5.5), dl_speed (9005, 5), ancil_costs (9370,

1.2). The method used to fill missing values was the mean of all the valid values in the

column.

3.5 Spatial Joins

In addition to the core variables mentioned above, the longitude and latitude data

from the listings was used to create several other features that measure attributes at

the zone level. Each longitude and latitude pair forms the Global Positioning System

(GPS) [31] coordinates of the corresponding object. In this case, each listing can be

placed on a map according to its GPS coordinates and the spatial relations to other ob-

jects with known GPS coordinates can be calculated. Calculating these relationships is

a type of spatial join.

For this work it is made possible by open source data available for the Hamburg area.

In particular the GPS coordinates of all subway stations (U-Bahn Stationen) [48] and
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suburban train stations (S-Bahn Stationen) [47] from the Hamburg area are collected.

The collected data has to be altered and the GPS coordinates have to be extracted from

the surrounding data.

Figure 3.3: Illustration of possible
polygon shapes. The
objects are characterised
by the coordinates of
their corners marked in
black. A multipolygon
would consist of these
polygons as array en-
tries.

In a second step the values in the for-

mat "degrees, minutes, seconds" have to

be converted to decimal degrees. This is

necessary, since the listings use the deci-

mal degrees format (epsg:4326). Another

variable collected is the "noise data" [46].

In this dataset, areas within Hamburg are

classified according to their exposure to

noise in decibel (dB(A)). These areas are

marked by "multipolygon" shapes. These

multipolygons mark the boundaries of an

area, that is spanned by all the contained

arrays of polygons [18]. The polygons

themselves have an outer ring marking

the borders of the polygon by the coor-

dinates of the corners, as illustrated in

Figure 3.3. There can be elements within

that ring in the form of their own coordi-

nates [18]. The spatial join is performed after converting the "noise data" coordinates

from epsg:25832 to epsg:4326 format, so they match the format of the listings. In the

actual joining step it is checked for each listing whether it is within one of the areas of

the "noise data". The areas contained in the "noise data" are all exposed to noise levels

above the respective threshold. The same process is used to assign the values from the

"neighbourhood data" [78] to each listing.

Distance to Station

The acquired GPS coordinates of all subway stations and suburban train stations from 3.5

is used to create the following features:

• min_dist: The minimum distance from each listing to either a subway station or

a suburban train station in kilometres (km), whatever is closer gives the value

• min_subway: The minimum distance from each listing to the next subway station

(km)

20



3 Methods & Data

• min_train: The minimum distance from each listing to the next suburban train

station (km)

• smaller_0.6: A binary variable defined as

smaller_0.6i =

 1, if min_disti < 0.6km

0, if min_disti ≥ 0.6km

With i ∈ L, i is the i-th listing and L is the set of all listings in the sample.

The value of the threshold (0.6km) is chosen, in order to indicate whether the closest

public transport station is within a walking distance of roughly 10 minutes at max-

imum [41, 87]. This is the number that the operator Hamburger Verkehrsverbund

(HVV) uses for its own calculations of the catchment area for any suburban and sub-

way station [26]. There is a reported increase in the valuation of a neighbourhood

and the average rent per square meter, when it gains access to public transport [40].

This is part of the reason this data was joined with the listings data, so its predictive

importance could be assessed.

Noise Data

Table 3.4: The noise levels by day and
night, starting with the low-
est values at the top and
increasing towards the bot-
tom.

Day Night

> 55− 60 dB (A) > 50− 55 dB (A)
> 60− 65 dB (A) > 55− 60 dB (A)
> 65− 70 dB (A) > 60− 65 dB (A)
> 70− 75 dB (A) > 65− 70 dB (A)
> 75 dB (A) > 70 dB (A)

The noise data gives the dB(A) values for the areas

exposed to street noise for daytime and for night

time as well. There is a difference between the

two, as the minimum dB(A) value needed to be

considered noise is > 60− 65 dB(A) for the day

time, while for the night time it is lower with >

50−55dB(A). Since the dB(A) scale is logarithmic

and there is a steep increase when moving up the

scale, this is a substantial difference between the

two entry level noise levels. There is evidence that

street noise is more "annoying" at night than it is

during the day [68] and it seems rational, given

that most people sleep during night time. This data was added to the dataset of the

listings as a categorical attribute for both day (noise_day) and night (noise_night).

All entries not exposed to noise levels within the range of table 3.4 were marked with

the value 0 in the corresponding column.
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Neighbourhood Data

The neighbourhood data is a product of the "Sozialmonitoring Bericht" [79] published

by the Urban Development and Housing Authority of the City of Hamburg. This is a

translation of the main purpose and methodology behind the annual report:

The Social Monitoring Report analyses and describes socio-spatial develop-

ments within the Free and Hanseatic City of Hamburg on an annual basis.

The aim is to identify socio-spatial differences within the city and to iden-

tify neighbourhoods potentially in need of support. For this purpose, a

small-scale analysis of selected indicators is carried out at the level of the

941 statistical areas of the City of Hamburg. In this way, sub-regions can

be observed, compared and statistical areas identified in which cumulative

problem situations may be suspected. [79]

Original German version in the Annex, Page 78.

There are two metrics from it that are used in this work. The first one is the actual

"Statusindex" (status) which is has a categorical value for each of the 941 statisti-

cal areas. Its values are from low to high: "very low", "low","mediocre","high". This

variable was converted to type categorical (a subset of type string variable) and the

values were converted as follows: {"very low": "1","low": "2","mediocre": ←↩
"3","high": "4"}, keeping the original order of the categories. The second one is the

"Dynamikindex" (dynamic) with "-","0","+" as values describing the socio-spatial trend

for each area, where "-" indicates a downward trend, "0" a stable situation and "+" an

upward trend. These were converted to type categorical as follows:

{"-": "-1","0": "0","+": "1"}
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3.6 Overview - All Variables

Table 3.5. A table showing all final variables in column 1 and their respective descriptions in
column 2.

Variable Description

base_rent The base rent (Kaltmiete) of the listing

kitchen Listing has a fitted kitchen yes/no

elevator Building has an elevator yes/no

ancil_costs Costs that are not included in the base rent

lat Latitude value of the listing

lng Longitude value of the listing

sqm The living space of the apartment in m2

balcony Listing has a balcony yes/no

floor The floor the listing is on inside the building

number_pics The number of images uploaded for the listing

dl_speed The internet download speed in mbit/s

ul_speed The internet upload speed in mbit/s

time_gap The number of days the listing was online

status The status index of the statistical area the listing is in

dynamic The trend of the status value for the statistical area

noise_day The Exposure to noise during day

noise_night The Exposure to noise during night

smaller_0.6 distance to next subway or suburban train station smaller 0.6km yes/no

min_dist The minimum distance to the next subway or suburban train station

min_subway The minimum distance to the next subway station

min_train The minimum distance to the next suburban train station

const The year the building was built
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Chapter 4 is about the visualisation of the variables in the data. It begins with an ex-

planation of the univariate distribution for each variable in the dataset in Section 4.1.

The correlations found between the variables is discussed in Section 4.2. In the same

section, the noise data is analysed for both day and night and its impact on base rent

specifically. What follows in Section 4.3, is a detailed heat map of the distribution of

variable base rent by statistical area, plotted onto a map of Hamburg. The last section

is Section 4.4. The general preprocessing done for machine learning is explained and

it discusses standardisation of the data, for the machine learning part that follows in

Chapter 5.

In order to understand the final data better, either visualisations or summary statistics

were created. It is about describing the distribution of the variables and about reveal-

ing the correlation between them. Strong correlation between pairs of independent

variables can be a sign of the existence of redundant variables. If the correlation is

extreme, it may be a sign of collinearity. Both cases pose problems for the analysis

of causal relationships between the affected variables and the dependent variable. The

figures showing histograms or bar chart type plots, often have a truncated x-axis range.

This range is narrower than the true range of values between the respective minimum

and maximum of the variable. This was done, since the omitted values were not visi-

ble in the original plots. The scale of the plots would have to be bigger, for them to be

visible, with the constraint from the paper size this was not possible. Please refer to

Table 4.1 for the complete range of values.

Categorical & Numerical Variables

There are two different types of variables in this work. Namely discrete categorical

variables with few possible values and continuous numerical variables. The categori-

cal variables used here are kitchen, elevator, balcony, status, dynamic, noise_day,

noise_night, smaller_0.6, const, floor. This was discussed in Section 3.4 and Sec-

tion 3.5. This kind of variable has categories as values that have no natural order or
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scale [45] and each listing can fall in exactly one of the categories for each variable.

Since all, but noise_day, noise_night were converted to a numerical categorical vari-

able type, only noise_day, noise_night are excluded from Table 4.1. It is not possible

to give the summaries found in Table 4.1 for string type variables. The remaining

variables have a natural, numeric scale and are therefore continuous numerical vari-

ables [45].

4.1 Univariate Distributions

The variables are shown in Table 4.1 with their summary statistics. Here is a descrip-

tion from left to right of what Table 4.1 shows. Count is the same for all variables,

since this is the final, clean dataset. The mean is the mean of the values given in the

unit of the variable.

Binary Categorical Variables In the case of the binary variables (kitchen, elevator,

balcony, smaller_0.6) its value measures the percentage of listings that have the fea-

ture within the dataset. What can be observed for these variables is:

• kitchen: mean = 0.61 =⇒ 61% of the listings have a fitted kitchen, 39% don’t.

• elevator: mean = 0.21 =⇒ 21% of the listings have access to an elevator, 79%

don’t.

• balcony: mean = 0.68 =⇒ 68% of the listings have a balcony, 32% don’t.

• smaller_0.6: mean = 0.48 =⇒ 48% of the listings have access to either a sub-

way or a suburban train station within a radius smaller than 600m, for 52% the

distance is equal or greater than 600m.

Continuous Categorical Variables Continuing with the other categorical variables

shown in Figure 4.2 it is visible that the distribution of floor has a mean of close to 2

and has a positive skew. floor is for the majority of observations 1 or 2. The status

index is 3 for around 6000 listings and the majority of listings therefore and is close

to the actual values of the "Sozialmonitoring Bericht 2018" [79]. The same goes for

the dynamic index with almost all listing being in areas that have a stable situation

in terms of their status class, again these values are close to the ones found in the

"Sozialmonitoring Bericht 2018". Looking at const the bulk of buildings was built in

the period after WorldWar II (WW II), between 1950 and 1975 roughly. DuringWW II

(1939-1945) large parts of the city were completely destroyed and so during the post-

war period many buildings had to be rebuilt or newly constructed [16]. It might show

that base_rent of apartments in buildings that were built during that time have a low
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Table 4.1. A table showing all numerical variables in column 1 and their summary statistics in
columns 2-11. For an explanation of the variable names, please see Table 3.5.

count mean std min 10% 25% 50% 75% 90% max

kitchen 9480 0.61 0.49 0 0 0 1 1 1 1

elevator 9480 0.21 0.41 0 0 0 0 0 1 1

ancil_costs 9480 159.08 83.13 0 73 100 144.96 200 265 950

lat 9480 53.57 0.05 53.4 53.49 53.55 53.58 53.6 53.62 53.71

lng 9480 10.01 0.09 9.74 9.9 9.96 10.01 10.07 10.13 10.3

base_rent 9480 752.89 446.9 148.97 363.23 451 633 906 1318.37 5600

sqm 9480 66.2 26.71 15 37.21 49 62 77.93 97.01 350

no_room 9480 2.41 0.88 1 1 2 2 3 3.5 8

balcony 9480 0.68 0.47 0 0 0 1 1 1 1

floor 9480 1.98 1.79 -1 0 1 1 3 4 24

number_pics 9480 8.36 5.58 0 2 5 7 11 15 64

dl_speed 9480 83.81 25.92 6 50 50 100 100 100 200

ul_speed 9480 31.11 13.91 2.4 10 10 40 40 40 100

time_gap 9480 22.8 45.78 0 0 1 7 26 59 924

status 9480 2.84 0.7 1 2 3 3 3 4 4

dynamic 9480 0.02 0.28 -1 0 0 0 0 0 1

min_dist 9480 0.92 0.84 0.01 0.23 0.37 0.63 1.16 2.06 9.44

min_subway 9480 1.79 1.54 0.03 0.4 0.67 1.27 2.46 3.94 9.44

min_train 9480 2.36 3.03 0.01 0.26 0.44 0.92 2.99 7.63 14.17

smaller_0.6 9480 0.48 0.5 0 0 0 0 1 1 1

const 9480 1966.56 31.95 1850 1920 1953 1964 1992 2013 2019

base_rent value compared with apartments built in different periods, with similar

features. The consideration comes from a simple supply and demand logic.

There is a sharp downward trend around 1975 to 1990 in the number of buildings

built during that period with a pickup in the Late-1990s. For several years between

2000-2010 the number decreases once again, to reach levels as high as the ones seen

around 1960 for the period 2010-2018. Right now, there is indication that a relatively

high number of residential buildings are constructed from this sample. This does not

completely align with the data in Figure 4.1, as according to the Statistikamt Nord [80]

the maximum of apartments built between 1990-2017 was in 1995 and the pickup in

construction after 2010 can not reach the levels of that period. The report of the Statis-

tikamt Nord, however, includes non residential buildings and construction measures

on existing buildings as well [80]. This may hinder a direct comparison between the

here found data from the sample of all listings and their data. The overall trend how-

ever is similar across both data sources. There are reports that rent prices are rising at

the moment in Hamburg [54].
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Figure 4.1. Line Chart showing the number of apartments constructed, in res-
idential and non residential buildings, incl. construction measures on existing
buildings (source: Statistikamt Nord) [80] for the years 1990-2017.

However, not as much as in other major cities in Germany possibly. This is also due

to the fact of a relatively high number of apartments being constructed at the moment

and a stable population in Hamburg, at least according to the Deutsche Bank German

housing market 2018 (Deutscher Häuser- und Wohnungsmarkt 2018):

In Hamburg, housing prices in the portfolio have risen by more than 70%

since 2009. Rents are growing at a below-average rate compared with other

major cities. The relatively brisk construction activity and the stable num-

ber of inhabitants are dampening rental dynamics. Low interest rates could

therefore be the main driver for Hamburg’s housing and house prices. Cor-

respondingly, interest rate sensitivity could be higher than in othermetropolises.

In our baseline scenario, we expect mortgage rates to rise only slightly in

2018. House and apartment prices in Hamburg should therefore continue

to rise strongly in the current year. [52]

Original German version in the Annex, Page 78.

For the prediction important is that there might be relevant rent increases for compa-

rable apartments between the beginning of the timeframe in July 2016 and the end in

November 2018, that might degrade prediction accuracy. smaller_0.6, the last vari-

able in Figure 4.2 is discussed at the beginning of Section 4.1 with the other binary

variables.

Continuous Numerical Variables Continuing with the numerical variables and their
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histograms in Figure 4.3. The histogram of base_rent shows a pronounced positive

skew in the data series. The mean (x̄) of 753 Euro for the series is low considering

the value range of 149-5600 Euro. However, extreme values above 1318.37 Euro only

account for 10% of the data. The standard deviation of 447 Euro is a better metric

to show the large spread of this variable. The one Sigma (s) interval has limits (Eur.)

[306 = x̄−s, x̄+s = 1200], with the lower limit≈ 40% of x̄ and the upper limit≈ 160%
of x̄ . A similar pattern is observed for ancillary costs (ancil_costs), with the distribu-
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1 2 3 4
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4000

Figure 4.2. Distribution of the categorical variables with the variable name and its value on the
x-axis and the absolute count on the y-axis. For an explanation of the variable names, please see
Table 3.5 .

tion exhibiting a bit less skew and a more linear falloff past the 130 Euro mark. Since

the determination of ancillary costs is not uniformly established regarding the costs

contained within them, it is difficult to consider them as a consistent variable. Square

meters (sqm) has a gaussian distribution like value distribution with a slight positive

skew. The mean is x̄ = 66 with the one Sigma interval, given in m2, of [39,93]. This

echoes the slight skewness for the series. The number of images that are uploaded

to describe the apartment seem to be important, since the highest frequency found

around 5 to 10 images and not zero. There are less than 10% of observations with

0 images, as can be seen in Table 4.1. The download (dl_speed) and upload speed
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(ul_speed) variables show that for both variables, observations gather around a few

mbit/s values. With these findings they have to be considered categorical variables, as

the value range is not continuous for the listings in the series. For dl_speed these are

(mbit/s, count): (100, 6404), (50, 2105), (83, 484), (16, 453), (25, 36), (200, 5), (6, 2).

For ul_speed: (40, 6404), (10, 2105), (31, 528), (2.4, 447), (100, 5). It is noticeable that

for the majority of observations tuples can be formed from values of both variables that

have near identical counts in the series. The variable measuring the days a listing was

online on the platform shows that there was strong demand for the apartments in this

series, since 25% of the data series was listed and delisted within two days, thus having

the time_gap = 1 day value. 10% have a value of 0 days, meaning that they were online

for less than 24 hours. The median is one week, see Table 4.1. There are values as high

as 924 days in the series, however the portion of values 59 ≤ time_gap ≤ 924 makes

up the highest 10% of all values for time_gap. Therefore, the impact is expected to be

small on the prediction results, if there were outliers amongst these values. The mini-

mum distance (min_dist) to either of subway or suburban train station shows that for

70.5% of observations the distance is ≤ 1 km and the median (50% quantile) is 0.63

km. This is in accordance with the observations described for variable smaller_0.6,

where 48% had a distance of less than 0.6 km. With the 50% quantile at 0.63 km it

shows, that the binary variable smaller_0.6 splits the set of observations into two al-

most equal parts. The distributions of the variables min_train, min_subway show a

very similar picture. Since the variable min_dist is set to the smaller value of the two,

its distribution is a concentration of the smallest values of the two. One can see that

the distance to the nearest subway station has a high concentration of values close to

zero and a sudden drop after approximately 1 km. In the case of the nearest suburban

train station the distribution is shifted towards the mean of 2.36 km and falls offmore

slowly afterwards.
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Figure 4.3. Distribution of the numerical variables with the variable name and its value on the
x-axis and the absolute count in the data series on the y-axis. For an explanation of the variable
names, please see Table 3.5.
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4.2 Correlation

Hypothesis Test The distributions of all variables were checked for whether they

may have a heavy tail. This was done by comparing them to the exponential dis-

tribution, as minimum requirement for possibly being heavy tailed. The reason is

definitional: "The typical quantitative definition of a "heavy-tail" is that it is not ex-

ponentially bounded." [27]. It is a prerequisite for the use of the Pearson Correlation

Coefficient (ρ) that the covariance for the bivariate distribution of the features exists

and the respective standard deviation as well, entailing that there must not be heavy

tails in the univariate distributions of the variables [70]. The detailed results can be

found in the Annex, Table 2. Variables where the test results do not confirm the null

hypothesis of: The distribution fulfils the requirements of ρ, at the α = 0.05 = 5%

level are: base_rent (p ≈ 0.004), floor (p ≈ 0.0004). ρ can still be used as metric, as

long as the relationship between variables is a linear one. This is the case with only

continuous relationships observed so far and the Lasso regression model showing it

is capable of predicting base_rent well (Section 5.1), being a linear model. An as-

surance that the correlations between the regressors are of a linear nature was gained

from the aforementioned hypothesis tests, with only variable floor fulfilling the min-

imum requirements to have a heavy tailed distribution. The values of ρ for the two

aforementioned variables have to be critically assessed [27].

Pearson Correlation Coefficient Therefore, the Pearson Correlation Coefficient is

used to calculate the correlations between the variables. Using this metric correlation

between two variables is defined on the domain [−1,1], where values of the coeffi-

cient ρ between −1 and 0, including −1, excluding 0, (ρ ∈ [−1,0[ ) show a negative

correlation between the two assessed variables. The opposite is the case for values of

ρ between 0 and 1 (ρ ∈ ]0,1] ), with a positive correlation. The strength of the cor-

relation increases with increasing values of ρ. The negative correlation gets stronger

with values of ρ closer to −1. In this data series one finds the strongest negative cor-

relation with a value of -0.64 between smaller_0.6 and min_dist. This is a result of

the definition of the two variables. Once min_dist goes below 0.6 km, smaller_0.6

switches from value 0 to 1. In the final model only smaller_0.6 is kept, since the other

three variables min_dist, min_subway, min_train show strong correlation with it. The

strongest positive correlation is observed for ul_speed and dl_speed with a value of

ρ= 0.9, consequently only dl_speed is kept. This follows the discussion in the context

of Figure 4.3 with nearly identical ratios between the two across observations. For sqm

and no_room ρ is 0.81, which signals that the number of rooms does not contain in-

formation not already given by the living space variable (sqm). It is dropped therefor.

Notable ρ values are:
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Figure 4.4. A correlation matrix with the correlation between the variables of the series. Values
are calculated using the Pearson Correlation Coefficient. For an explanation of the variable names,
please see Table 3.5.

1. const:

• The year the building/apartment was built has ρ = 0.43 for elevator. It is

plausible that younger buildings are more likely to have an elevator than

older ones.

• For ancil_costs: ρ= 0.24. There seems to be an increase in ancillary costs

as the year of construction of the property increases.

• For kitchen: ρ = 0.23. This suggests that it is more likely to find a fitted
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kitchen in an apartment with the increase in year of construction.

• Importantly there is a correlation between it and base_rent (ρ = 0.16). It

is slight, but the positive value suggests a positive correlation between the

two.

2. base_rent:

• The highest ρ= 0.82 is for sqm. It is common that base rent and living space

are correlated. The Hamburg housing market seems to be homogeneous

regarding the relationship between these two variables for most part of the

base_rent price range, in which the living space is very important for the

amount of the base rent.

• It is closely followed by the number of rooms (ρ = 0.58) and ancillary costs

(ρ = 0.56). Given the strong correlation between base_rent and sqm, an

increase in ancillary costs with an increase in the number of square meters

therefore seems appropriate. Larger apartments often need more energy

for heating and with increasing sqm, an increase in base rent is associated.

Heating costs are mostly settled through the ancillary costs and are there-

fore part of these. The same considerations apply to the number of rooms.

• A notable mention is the (ρ= 0.38) for time_gap, indicating that listings for

expensive apartments are online for longer, compared to affordable apart-

ments.

Variables beside these that have predominantly positive ρ values are status, time_gap,

number_pics, balcony, sqm. There is a slight positive correlation indicated between

lat and base_rent and a negative one for lng and base_rent. Since longitude mea-

sures the horizontal movement (West-East-axis) and its values get larger going east-

wards, the negative correlation suggests that the base rent is lower in the eastern part

of Hamburg and higher in the western part. With latitude measuring the vertical

movement (North-South-axis) and rising values going towards North a positive corre-

lation hints at higher base rent values in the northern part of Hamburg than in the

southern Part. These interpretations might not be true, since it is unclear how many

samples there are in the series for each fraction of lat, lng that is part of the Hamburg

area and whether the listings in the sample are spatially distributed in a way around

Hamburg, so these correlations are based on solid grounds.

With the elimination of variables ul_speed, no_room and by only keeping smaller_0.6,

redundant variables are dropped. Collinearity is also not the case amongst the inde-

pendent variables judging by ρ, after these steps are taken.
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Noise Data

Noise Day The ridge plots of base_rent by noise_day show that most of the data is

exposed to less than >55-60 dB (A) (row 1 in Figure 4.5) of noise during the daytime.

There are only 840 entries in total that make up the data for the other rows. The non

zero entries have the distributions (row, zone : entries): (2, >55-60 : 165), (3, >60-65

: 203), (4, >65-70 : 269), (5, >70-75 : 170), (6, >75 : 33). One notices from looking

at Figure 4.5, that for each zone most of the base_rent entries are slightly left of their

mean of 753 Euro and that the upper quantile of base_rent entries tends to decrease

with increasing noise levels. However, there are some outliers that do not follow this

pattern, as is the case in row 5 around the 2000 Euro mark.

0

>55-60

>60-65

>65-70

>70-75

500 1000 1500 2000 2500
Base Rent (Eur)

>75

Figure 4.5. The relationship between base rent (Eur) on the x-axis and its frequency by noise level
during day (dB (A)) on the y-axis. The noise level increases from top to bottom.

Since the sample size for all but row 1 is very small, sample variation could influence

these findings.

Noise Night For the night time data there are around 600 non zero entries and
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the observed pattern is similar to the one found in Figure 4.5. The ridge plot for

noise_night can be found in the Annex, Figure 1.

4.3 Heat Map of Base Rent

Using the GPS coordinates of the listings it is possible to make a plot (heat map) that

shows the spatial distribution of the normalised base_rent variable on a map of Ham-

burg. To show the univariate distribution of base rent without the influence of living

space a variable "base rent per square meter" (rent_sqm) that gives the value of base

rent normalised by the size of the apartment is created. Formally it is for the i-th

listing of the set of all observations (L):

rent_sqmi =
base_renti

sqmi
, i ∈ L

Table 4.2: The 10 highest values for rent per
square meter in the right most col-
umn grouped by statistical area first
and by district second.

stat. area district rent_sqm

6004 Hammerbrook 29.05

37006 Harvestehude 23.11

27006 Othmarschen 22.52

37008 Harvestehude 19.97

2002 HafenCity 19.14

36009 Rotherbaum 18.86

27003 Othmarschen 18.67

43012 Stellingen 17.68

45011 Eppendorf 17.51

35003 Eimsbüttel 17.47

In Figure 4.6 it can be seen by

the grey areas, that not all ar-

eas inside Hamburg are repre-

sented in the series. There are

719 statistical areas (definition,

see Section 3.5, Sozialmonitor-

ing) with data and 222 with-

out. The median count of ob-

servations per statistical area is

78 and the standard deviation is

100. So for many areas there is

a large number of observations

and the mean value of rent_sqm

is meaningful. It is evident, that

the mean of rent per square me-

ter by statistical area has a ten-

dency to increase from East to

West. It is higher for areas closer to the city centre, than for ones further away from

it. The following values are given in Euro per m2. The minimum for rent_sqm is 3.77,

the mean 11.27 and the median is 10.93 with a maximum value of 39.2. See Annex,

Figure 2 for a box plot.
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Figure 4.6. The heat map of the mean value of base rent per square meter (Eur.) aggregated at the
statistical area level to give one uniform colour shade per area. The legend shows the corresponding
shade for each rent per square meter value in Euro. Grey areas mark neighbourhoods in Hamburg
from which no listings are in the series.

4.4 Preprocessing

The dataset was split into two parts for the machine learning. The first one is the

training set, which contains 80% of the listings data in the dataset. The training set is

used to train and evaluate the models, during the initial fitting and the subsequent Hy-

perparameter Optimisation process. A 3 fold cross-validation is used to measure the

performance of the different model configurations during the Hyperparameter Opti-

misation process. With 3 folds, the training set is randomly split into 3 subsets (folds).

Themodel is trained on 2 folds and evaluated on the remaining fold (test set). This pro-

cess is repeated 3 times, so that each combination of folds was once used for training

and that each fold was once the test set. The result is 3 scores per parameter combina-
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tion tested. Each model configuration tested during the optimisation is assessed solely

on the mean of the individual accuracy scores for each of the 3 repetitions. The second

set that makes up 20%, is called a validation set. It is only used once at the end of

the optimisation process and is meant to give an estimate of the performance one can

expect from a model on unseen data. Sampling was done randomly with a constant

random seed to enable comparable results between sessions.

A Need for Standardisation?

For the machine learning part, a standardised and normalised version (standardised

data) of the up to this point described dataset (non standardised data) was created to

compare the prediction results between the two versions. This was done, as the original

dataset has many different units in its variables that have very large differences in the

value range in some cases. An example for non normalised value ranges is the latitude

variable lat whose values range from 53.4 to 53.71 (Table 4.1) and dl_speed which

values range from 6 to 200. There are also variables in the dataset with very different
distributions, as is the case with dl_speed with a strong negative skew and base_rent

with a strong positive skew. To fix this all variables are transformed so that they have

a mean value of 0 and a standard deviation of 1. The function StandardScaler from

sklearn.preprocessing was used for this [76]. The standardisation was made after

splitting the data into training and validation sets. This was done to ensure the training

data is not influenced by the scale of the data in the validation set.

Another technique used is binning. Here the value range of a variable is split into a

user specified number of bins. It was used for variable const, the year the building was

constructed. The value range of this variable is very broad with values from year 1850

to year 2019. Each bin size was chosen to contain a period of 20 years. This means that

variable constwas split into 9 groups. This number was chosen, so that the coefficients

of the Lassomodel could possibly give a better explanation of the effects that different
time ranges of const have on the value of the dependent variable base_rent.
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This chapter documents the process of fitting, optimising and interpreting the models.

First, the evaluation metric used here for measuring the accuracy of the models is ex-

plained and important declarations are made. The following Section 5.1 deals with the

Hyperparameter Optimisation. The Lasso model is first optimised, then the XGBoost

model. An overview of the RMSE values by model, method and set is found in Sec-

tion 5.2. The coefficients of the Lasso are interpreted in detail in Section 5.3 and the

feature importance plot of the final XGBoostmodel is described in Section 5.4.

Evaluation Metric The evaluationmetric used is the Root-Mean-Square-Error (RMSE)

and its values are in Euro. It is defined as:

RMSE =

√∑
i∈L(ŷi − yi)2
L

With L being the set of listings and i one listing in L. The RMSE then gives the square

root of the mean value of the squared deviations of the predicted results ŷi from the

true values yi . The goal is to minimise the value of RMSE on the respective left out fold

for each of the 3 times repetitions, by using Hyperparameter Optimisation on a model.

The model should make predictions ŷi as close to the true values yi as possible, after

the Hyperparameter Optimisation procedure. This minimises the term
∑
i∈L(ŷi − yi)2

and as a result the value of RMSE. The validation set is then used to estimate the

performance of the final model. If the results on the validation set are much worse

than the results during the optimisation process, this can be a sign of overfitting. The

values mentioned here are rounded to two digits, since there is no information gain

from having more decimal places for the objectives of this work. Calculations were

made without any rounding of numbers.

Declarations For the following these declarations are made: Numerical values in

brackets, like (149.45), for either model refer to the RMSE value of the particular con-

figuration of the model on non standardised data. Values of the form (149.54, 190.45)

denote the RMSE values for a model configuration on non standardised data, stan-
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dardised data (RMSE on non standardised data, RMSE on standardised data). Also,

data options will refer to both versions of the data, the non standardised and the stan-

dardised data together.

The models are fitted and optimised using the Python library scikit-learn [69]

(sklearn). Lasso is part of the sklearn toolkit [73], while XGBoost is accessed through

sklearn using an API [61]. Like that there is a wrapper for XGBoost so it can be han-

dled like any other sklearnmodel.

5.1 Hyperparameter Optimisation

During the initial fitting and testing the XGBoost model gave better predictions than

the Lasso with values of (145.75, 144.8) for XGBoost and (195.62, 196.02) for Lasso.

This difference in accuracy between the two models was expected though, as XGBoost

is an ensemble based model and it proved to be a very successful one in various com-

petitions [66].

As the winner of an increasing amount of Kaggle competitions, XGBoost

showed us again to be a great all-round algorithm worth having in your

toolbox.

Winners Interview, Mad Professors. [23]

These values mark the baseline by which changes to the parameters of both models

will be compared with.

Optimisation Lasso

For Lasso there is only one parameter alpha (α) that can be optimised. Here a grid

search was used for the optimisation, given the low dimension of the search space for

this single hyperparameter. This parameter has a value range between 0 (Linear ←↩
Regression) and 1 (default for Lasso), see Section 3.2. This parameter is also called

λ in other libraries. A grid search was used with a list of values for α in the range of

α ∈ [0,1.2] in increments of 0.1. The smallest values for RMSE were found for α = 0

on the training set without any issues. Using this value on the valuation set had the

model not converge during the coordinate descent. On the scikit-learn [69] website

the following can be found regarding alpha:

alpha : float, optional

Constant that multiplies the L1 term. Defaults to 1.0. alpha = 0 is equiva-
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lent to an ordinary least square, solved by the LinearRegression object. For

numerical reasons, using alpha = 0 with the Lasso object is not advised.

Given this, you should use the LinearRegression object. [73]

Since the value 0.1 for α showed identical values for RMSE (see Annex Figure 3), this

value was chosen for the model to converge. With α = 0.1 the predictions on the

validation set gave (190.68, 190.64). This is an improvement over the initial scores

on the training set and even over the best scores during the grid search: Best: ←↩
195.160000 using {’alpha’: 0.0}. These were identical for both data options.

Listing 5.1: Specification of the final Lasso model with parameter names from the sklearn library.

from s k l e a r n . l i n e a r_mode l import Lasso

Lasso ( a l p h a =0.1 , copy_X=True , f i t _ i n t e r c e p t =True , max_iter =1000 ,

n o rma l i z e=Fa l s e , p o s i t i v e =Fa l s e , precompute=Fa l s e , random_state =42 ,

s e l e c t i o n =’cyclic ’ , t o l =0.0001 , warm_start=F a l s e )

The model started already with a high accuracy and was able to use the input variables

well for prediction. There was little increase in performance foundwith the grid search

when one compares the initial training score of 196.02 with the best training score of

195.16, but one has to keep in mind that only alpha can be optimised within a small

range and that the model generally has its strength in explaining the results as well.

The different data options had very little impact on the performance of this model.

There was no result in the entire process of training, optimisation and evaluation of

the model where the difference in RMSE was greater than 1 unit for the different data
options.

Optimisation XGBoost

With the XGBoost model there are more parameters that can be set by the user, see

Section 3.2. It is more complex than Lasso in this regard.

Description of Parameters The following parameters were optimised using struc-

tured experiments. The total number of trees is given by n_estimators and the max-

imum depth of each tree by max_depth. The learning_rate limits the information

gained from a newly added tree by adding a weighting factor to its correction. These

two parameters can have a strong interdependence. If learning_rate has a low value,

the corrective output value (or information gain) of the newly added tree can not be

fully included in the model. This could potentially mean, that improving the RMSE re-

quires adding more trees when the learning rate is low compared to when the learning

rate is high. An analogous relationship may also be plausible for n_estimators and

40



5 Machine Learning

max_depth. Here the assumption would be that shallow trees are associated with less

information gain per tree and trees with more splits can generate a higher information

gain from the inputs. According to this logic, a smaller number of deep trees would

then be required compared to shallow trees in order to achieve the same information

gain. The remaining parameters are part of the stochastic gradient boosting proce-

dure [45]. colsample_bylevel is the sample size of the bootstrap sample, in percent

of the entire set of columns in the dataset, that is randomly sampled when constructing

each level (split) of a tree. colsample_bytree is the fraction of columns that is used

for the construction of an entire tree. subsample gives the percentage of rows that are

used in each sample to construct a tree.

Grid Search

Protocols of Structured Tests For the tests, only the selected parameters are changed

from their default values, all others have their default values. Detailed protocols for

each test together with the idea behind each test specification are given in the follow-

ing. The interaction between the questions asked for each test and the results gained

from it is explained as well. They are grouped by parameter names and sorted in

chronological order. They are summarised by the bullet points, to give the structure

and the key insights for each of the conducted tests.

Number of Trees

The experiments used for the parameter n_estimators (which defaults to n_estimators=

100) are:

• Test 1: Maximum number of trees in the interval [50,950] with steps of 50. The

lowest RMSE value was achieved with 950 trees. Since it is the maximum in the

test range another test is conducted.

• Test 2: Interval [800,1750]with steps of 50. Best result with 1750. It is the highest

value in the testing range again and a very high optimal value. Adding a lot of

trees can lead to overfitting and therefor the parameter is tested with other ones

in conjunction and no further single testing is done.

• Tests were conducted for both data options and results were identical for large

numbers of trees. Since only a large amount of trees gave optimal results, at least

for n_estimators both data options are identical.
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Figure 5.1. Plot showing the RMSE for number of trees tested.

Maximum Depth of Trees

For max_depth (default max_depth= 3), the test is:

• The interval with values is [1,9] with a step size of 2. Best result is found with

max_depth = 5. This value is in the middle of the testing range and no further

testing for this parameter by itself is done.

• There was no difference in the optimum value of max_depth between data options.

Number of Trees & Maximum Depth of Trees

In order to test how good the results from the individual tests for n_estimators and

max_depth are, an experiment testing both simultaneously was conducted. The speci-

fications are:

• For max_depth the interval is [1,9], step size is 1. The step size was lowered, to

test whether optimal values could be found for even values excluded from the

individual test of max_depth.

• For n_estimators the interval is [50,950], step size is 50. It was believed that the

number of trees should not exceed 1000, because of possible overfitting and so

the interval was not changed for this test.
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• Results were max_depth = 5, n_estimators = 950.

• This was treated as a sign that max_depth = 5 is optimal. It shows that more

testing is needed to find the optimum for n_estimators.

• Only non standardised data was used, since results were identical for both indi-

vidual tests of the selected parameters.
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Figure 5.2. Plot showing the RMSE values for dif-
ferent values of max_depth and n_estimators,
tested together.

Learning Rate

An experiment was also done for learning_rate. It was an experiment that was hoped

to give insight to the very high number of trees in the tests before. The default for

learning_rate is 0.1. The hypothesis was that, if learning_rate is too low and the

model can not gain enough information from a newly added tree, then it might need a

high number of trees as observed in the tests for n_estimators.

• To test the hypothesis, higher values for learning_rate were included in this

grid search. The range of values is [0.0001,0.001,0.01,0.1,0.2,0.3,0.4].

• Best result is achieved with learning_rate = 0.2.

• The results are in line with the hypothesis, since the optimum value found in this

test is higher than the default value of 0.1 for learning_rate.

• Findings do not differ for the different data options.
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Figure 5.3. Plot showing the RMSE values for dif-
ferent values of learning_rate, during isolated
testing.

Number of Trees & Learning Rate

A joint test for n_estimators and learning_rate was performed, since the 0.2 value

for learning_rate suggests that the default of 0.1 is too low.

• To test this a broad range of values for n_estimators is used with [100,1750] and

a step size of 50. This includes the entire range that was tested during the two

individual tests for n_estimators.

• The range for learning_rate is [0.0001,0.001,0.01,0.1,0.2,0.3,0.4].

• Best results are for (n_estimators,learning_rate) with values (1150, 0.2).

• This can be interpreted as the learning rate of 0.2 giving the model more infor-

mation gain per tree and thus with this learning rate of 0.2 not ≥ 1750, but a
lower number of 1150 n_estimators give best results.

• Findings do not differ for the different data options.
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Figure 5.4. Plot showing the RMSE values
for different values of learning_rate and
n_estimators, tested together.

Subsampling, Subsampling by Column

For the remaining parameters subsample, colsample_bytree and colsample_bylevel

individual tests were conducted.

• The value range is [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,1] for all of them.

• The optimum value is 0.5 for all of them.

• These results are consistent across the data options.

45



5 Machine Learning

0.2 0.4 0.6 0.8 1.0
Subsampling Columns by Tree  (%)

150

160

170

180

190

RM
SE

Figure 5.5. Plot showing the RMSE values for dif-
ferent values of colsample_bytree, during iso-
lated testing.
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Figure 5.6. Plot showing the RMSE values for dif-
ferent values of subsample, during isolated test-
ing.
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Listing 5.2: Output of test subsample, to illustrate the raw print () output received from any of
the tests in Python.

# sub s amp l i n g : ‘ [ 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 1 ] ‘
# non s t a n d a r d i s e d data ( had b e t t e r r e s u l t s than the s t a n d a r d i s e d ←↩

data , by app rox . 1 RMSE u n i t )
# a l l o t h e r p a r ame t e r s have t h e i r d e f a u l t v a l u e s

Best : 149.840000 u s i n g {’subsample ’ : 0 .5}
The RMSE i s 155 .0 w i t h : {’subsample ’ : 0 .1}
The RMSE i s 155 .44 w i t h : {’subsample ’ : 0 .2}
The RMSE i s 153 .21 w i t h : {’subsample ’ : 0 .3}
The RMSE i s 154 .44 w i t h : {’subsample ’ : 0 .4}
The RMSE i s 149 .84 w i t h : {’subsample ’ : 0 .5}
The RMSE i s 152 .87 w i t h : {’subsample ’ : 0 .6}
The RMSE i s 153 .27 w i t h : {’subsample ’ : 0 .7}
The RMSE i s 152 .95 w i t h : {’subsample ’ : 0 .8}
The RMSE i s 152 .81 w i t h : {’subsample ’ : 1}

Summary The final model with the optimal parameter settings is shown in List-

ing 5.3. A very high number of trees of 1150 (default 100) showed to be optimal to-

gether with a learning rate of 0.2 (default 0.1). The interdependence of n_estimators

and learning_rate as mentioned above showed over the testing process. Values up

to 1750 were tested, after successive tests gave optimal results at the highest values in

the range of values of the respective test for this parameter. From the joint experiment

of these two parameters is where the final values come from. There the optimal num-

ber of trees was in the middle of the value range with 1150. The maximum depth of

each tree stayed consistent throughout the tests with a value of 5, not supporting the

aforementioned hypothesis regarding n_estimators and max_depth. All subsampling

parameters were found to have their optimum with a value of 0.5.

The tests were either identical for the data options or the difference was only ±1 RMSE

unit.
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Figure 5.7. Graphic showing the process and the characteristics, as well as the outcomes of grid
search and random search in this work. From bottom to top: The first row shows all one parameter
tests and declares the respective colour associated with each parameter. Coloured lines show where
a test result of a parameter value was used as an input for a test in a higher row. The second row
gives the two parameter tests that were conducted. The validations give the final RMSE score
for each approach. "Models built" gives the total number of models built for each approach. The
dotted yellow double line separates the two approaches.
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Validation Results The validation results were expressed in RMSE: 131.68 for the

standardised dataset and 120.58 for the non standardised dataset. For the XGBoost

model the standardised data showed a tendency to give worse results compared to the

non standardised data during training. The spread on the validation data was much

greater than on the training set.

Listing 5.3: Specification of the final XGBRegressor model after the grid search with parameter
names from the xgboost Python library.

from xgboos t import XGBRegressor

model = XGBRegressor ( random_state =42 , n_es t ima to r s =1150 ,
l e a r n i n g _ r a t e =0 .2 , max_depth=5 , subsamp l e =0 .5 ,
c o l s amp l e_b y l e v e l =0 .5 , c o l s amp l e_by t r e e =0 .5)

Random Search

Method There are many parameters that can be set on the XGBoost model [92].

Since the numerous possible value combinations for all parameters make it difficult to

test efficiently, another approach to optimising the results was explored as well. Ten

parameters were picked out for optimising the results using a randomised search. The

difference between a grid search and a random search, based on the documentation

section of the sklearn library for grid search [2] and random search [75] respectively,

is that for a grid search the user gives an exhaustive list of values for each parameter

to the grid search method. The grid search algorithm then builds models for all pos-

sible combinations of the values entered by the user. Therefore, the complexity of the

search increases, with the number of values entered by the user. As an example, take 3

parameters a, b, c. For each one the user enters 10 values. The result is that during the

grid search 10 ·10 ·10 = 1000models get built, regardless of how many of these combi-

nations actually yield good accuracy scores. To combat this increase in complexity by

increase in input values a random search can be used. Here distributions of variables

are passed on to the algorithm instead of fixed values. Continuous distributions can

be used to pass on non exhaustive sets of test values. The algorithm then samples the

distributions given by the user and only builds models for some of the sampled input

values. It looks for the combinations of parameters that yield a distinct and different
result compared to all other models already built [11]. Thus there is no direct link

between the number of input variables and the number of models that get built. The

algorithm is given a "computational" budget in the form of how many models it is al-

lowed to build in total during the test.
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Listing 5.4: Specification of the final XGBRegressor model after the random search with parameter
names from the xgboost Python library. All parameters were optimised in one single test
where a total of 900 models were built.

from xgboos t import XGBRegressor

"XGBRegressor(alpha =0.2, base_score =0.5, booster=’gbtree ’,

colsample_bylevel =0.6511245191281928 , colsample_bynode =0.4001 ,

colsample_bytree =0.890805910634995 , gamma =1.3744079987707487 ,

importance_type=’gain ’, lambda =1.4200000000000008 ,

learning_rate =0.013686923721625832 , max_delta_step =0, ←↩
max_depth =10,

min_child_weight =1, missing=None , n_estimators =1447, n_jobs=1,

nthread=None , objective=’reg:linear ’, random_state =42, ←↩
reg_alpha=0,

reg_lambda =1, scale_pos_weight =1, seed=None , silent=True ,

subsample =0.4529439356235432)"

Results In Listing 5.4, the parameters of the final XGBoostmodel can be found. The

grid of parameter distributions given to the algorithm, is shown in Listing 5.5. With

this method a total of 900 models were built and the validation scores are expressed

in RMSE, for the standardised dataset 125.72 and for the non standardised dataset

115.39. In this example random search was better than a manual grid search (120.58)

by a difference of RMSE = 4.19.
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Listing 5.5: The parameter distributions used for the random search test.

import s c i p y . s t a t s
import numpy as np

de f get_truncated_norma l (mean , sd , low , upp ) :
r e t u r n s c i p y . s t a t s . t runcnorm ( ( low − mean ) / sd , ( upp − mean ) / ←↩

sd , l o c =mean , s c a l e =sd )

param_dis t = {
’n_estimators ’ : s c i p y . s t a t s . r a n d i n t (400 , 1700) ,
’learning_rate ’ : np . random . random_sample (100) ,
’max_depth ’ : s c i p y . s t a t s . r a n d i n t (4 , 12) ,
’subsample ’ : ge t_truncated_norma l (mean =0.6 , sd =0 .4 , ←↩

low =0 , upp=1) ,
’colsample_bylevel ’ : ge t_truncated_norma l (mean =0.7 , sd =0 .4 , ←↩

low =0 , upp=1) ,
’colsample_bytree ’ : ge t_truncated_norma l (mean =0.6 , sd =0 .4 , ←↩

low =0 , upp=1) ,
’colsample_bynode ’ : ←↩

np . random . c h o i c e ( np . a r ange ( 0 . 0 001 , 1 , 0 00 . 1 ) , s i z e =300 , r e p l a c e =True ) ,
’lambda ’ : ←↩

np . random . c h o i c e ( np . a r ange ( 0 . 5 , 1 . 5 , 0 . 0 1 ) , s i z e =300 , r e p l a c e =True ) ,
’alpha ’ : ←↩

np . random . c h o i c e ( np . a r ange ( 0 , 1 , 0 00 . 1 ) , s i z e =300 , r e p l a c e =True ) ,
’gamma ’ : s c i p y . s t a t s . expon . r v s ( s i z e =500)}

It should be pointed out that the optimal values found with the grid search were used

as a starting point for the random search. This could limit the comparability of the

results in terms of how computationally expensive they were to get. Without these

initial values it could be that more than 900 iterations with random search optimisa-

tion are needed to get the result of RMSE = 115.39. However, there is still a big gap

in favour of the random search in this regard between the two procedures in terms of

how many models were built. This is illustrated in Figure 5.7. During the grid search

a total of 1458models were built, while for the random search a total of 900were built.
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5.2 Overview - RMSE Values

ATable showing all RMSE values. From left to right, with the respective column names

in brackets, the RMSE values are categorised by model ("Model"), the optimisation

method where the respective RMSE value resulted from ("Method"), the RMSE score

itself ("RMSE") and whether the training set or the validation set was used ("Training

or Validation"). Method "baseline" describes the initial fitting of the models with no

optimisation method applied. Values are for the non standardised data option, since

RMSE values where either identical (±1) for both data options or better on the non

standardised data.

Table 5.1. Table showing all RMSE values, from left to right:
For Model, Method, the RMSE score and whether it was with
the training set or the validation set.

Model Method RMSE Training or Validation

Lasso
baseline 195.62 training

grid search 190.68 validation

XGBoost

baseline 145.75 training

grid search 120.58 validation

random search 115.39 validation

5.3 Lasso - Interpretation of Coefficients

The coefficients of the Lasso model can be interpreted in the same way as the coeffi-

cients of a simple linear regression model. It cannot be ensured that causal relation-

ships between the regressors and the dependent variable are described by the estimates

of the coefficients by the model. For this it should be possible to rule out the possibil-

ity of an omitted variable bias. This is not possible due to the many factors potentially

relevant for the value of the base rent, see Section 2.1. Nevertheless, the correlations

between the regressors and the dependent variable are described below based on the

coefficients estimated by the model. Detailed values for all weights for both data op-

tions can found in Table 5.2. Figure 5.8 shows the estimated weights in a bar plot

for the non standardised data. Non standardised data was chosen here, as the coef-

ficients of the continuous variables can be interpreted easier than with standardised

data. There are no differences regarding whether a weight estimate has a positive or a

negative sign between the data options. It is the values that can differ.

A foundation regarding the interpretation of regressors follows. The regression func-
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Figure 5.8. Plot showing the estimates for weights wi with the optimal α = 0.1. All independent
variables are listed on the x-axis with the estimated weights on the y-axis. For an explanation of
the variable names, please see Table 3.5 and Section 4.4.

tion is y = b+m ·x and its partial derivative regarding xi ,j is
∂y
∂xi ,j
= ∂xi ,j ·wj . Let dummy

regressor (variable) and its estimated weight be xi ,j ,wj , i ∈ L, j ∈ X with L the sample

of all listings, X the set of all regressors in the model. xi has value xi = 0, if the fea-

ture is absent that xi describes and xi = 1 if it is present. The relationship between xi
and y then is such, that xi measures the difference in value of y between xi = 0 and

xi = 1.

The partial derivative ∂Y∂X is the rate at which dependent variable Y changes

per change in independent variable X, net of the effects of other variables
in the model that influence Y. [81]

This means that the value of wj translates to the amount that the dependent variable

is higher, if the feature is present and wj > 0, compared to when it is not. If wi < 0, the

weight gives the amount that the dependent variable is lower, if the feature is present,

compared to when it is not. In the following for binary variables the part "compared to

when it is not present", is not explicitly added, but this is always the basis for compar-

ison. Also, all numbers expressed are in Euro, all statements are made ceteris paribus

and they only describe effects on average between regressor and dependent variable.
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Table 5.2: Weights of the Lasso for
the standardised/non stan-
dardised data in column
"Stand."/"Non Stand.".

Regressor Stand. Non Stand.

kitchen 93.3098 93.5189

elevator 108.9329 108.2650

ancil_costs 26.0164 0.3135

lat 6.239149 80.289014

lng -23.7540 -253.5753

sqm 292.8326 10.9200

balcony -6.4847 -6.6686

floor 14.9768 8.1879

number_pics 23.3877 4.1946

dl_speed 2.9967 0.1200

time_gap 41.1305 2.6461

status 47.8749 68.4892

dynamic -3.6751 -11.7444

noise_day -2.3626 -1.2076

noise_night 4.7951 5.5244

smaller_0.6 81.9303 81.9833

1841 - 1861 25.4141 25.3295

1861 - 1881 132.4772 131.1990

1881 - 1901 63.4769 63.2924

1901 - 1921 42.8391 43.1351

1921 - 1941 -71.5610 -71.5296

1941 - 1961 -72.6018 -72.6182

1961 - 1981 -152.4916 -151.8401

1981 - 2001 -153.4999 -152.4364

2001 - 2021 0.0000 0.0000

The significance level of the estimated

coefficient values can not be easily com-

puted, since the standard error is difficult

to calculate for the Lasso model [17, 83].

Therefore, it is unknown to what signif-

icance level the coefficients are not null

here. In the following, the significance

level αsig = 5% is used as a basis, if the

significance level is not explicitly men-

tioned in the respective statement. With

the low value of α = 0.1, it is possi-

ble that little shrinkage has been applied

to the coefficients by the model. There

is only one weight that is set to zero

by the model, see Table 5.2. To assess

the level of shrinkage applied, the coeffi-

cients should be compared with the ones

from an ordinary least squares regression

model [30, 86].

Interpretation - Binary Variables The

interpretation of the weights for the bi-

nary variables is then: kitchen with a

value of 93.52 suggests that base_rent is

93.52 higher, if the apartment has a fitted

kitchen. elevator shows that base rent is

108.27 higher, when there is an elevator

in the building. balcony points towards

a lower base rent of−6.7, if there is a bal-
cony. smaller_0.6 suggests an 81.99 in-

crease in base rent, if there is either sub-

way or a suburban train station within a 600m radius of the apartment. The year the

building was constructed was split into 9 groups, see Section 4.4. It is not possible to

evaluate the coefficients of these like the binary variables before, due to the fact that

all listings are in buildings that were built at some point. Therefore, the comparison

with "feature is absent" can not be made. Nevertheless, correlations and the strength

of them, approximated by the values of the estimated weights, can be analysed. The
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highest positive value is given for 1861− 1881 with 131.2 suggesting that houses built

during that period have apartments that are more expensive compared to all the other

8 groups. The lowest positive value of all groups has 1841−1861 with 25.33 This large

difference between the two adjacent time periods 1841− 1861 and 1861− 1881 would

require further analysis. Possibly binning bias plays are role or there was an asymme-

try in the sample regarding the number of samples for each period or a historical event

might play a role. Given that the significance levels of the estimated coefficients are

not known, the coefficient estimate for either or for both of these periods, might not be

valid. There could also be other factors that explain this. One notices that all groups

from 1921−1941 onwards up to 1981−2001 have negative coefficients associated with

them. This suggests that for buildings in the sample constructed within these periods

the base rents are lower compared to buildings of the other groups. The values go from

−71.53, −72.62 for the period 1921−1941, 1941−1961 down to −151.84, −152.44 for
1961−1981, 1981,2001. These results backup the hypothesis made in Section 4.1, that

the base_rent is comparatively low for apartments in buildings that were built during

the highest construction periods in the sample. The only coefficient set to zero was the

one for 2001− 2021, indicating that not much predictive importance is given to this

category by the model.

Interpretation - Continuous Variables For the regressors with continuous values

the interpretation of the weights is that for every marginal increase in xj the depen-

dent variable y changes in the magnitude equal to the value of wj . Regarding whether

y increases or decreases when xj increases, it depends on the sign of wj as mentioned

earlier. Here marginal changes are based on the 1 Euro level. ancil_costs has a pos-

itive weight (0.31) indicating that an increase in ancillary costs by 1 Euro brings with

it an increase in base_rent by 0.31 Euro. This is close to the mean value of the ratio
ancil_costs
base_rent

= 0.25 for all listings in the series. The latitude (lat) variable has a large

positive coefficient (80.29). However, the marginal increase here is based on one addi-

tional latitude unit. In the series the maximum distance between two listings is ≈ 0.31
degrees of latitude or ≈ 33.97 kilometres. The function lat_dist(), used to convert

between distance in degrees and kilometres can be found in the Annex, Listing 2. For

the given data then, the degrees of latitude per kilometre is ≈ 0.00899. Multiplying

with the coefficient value then gives 80.29 · 0.00899 ≈ 0.72. The latitude values mark

the position of an object in the North-South direction and its values increase on the

northern hemisphere towards North. What this translates to then is that for each kilo-

metre further North within the listings range base_rent increases by 0.72 Euro. For

the entire latitude range of the sample in kilometres (≈ 33.97), this effect can at most

cause a difference in base_rent of 33.97 · 0.72 ≈ 24.46 Euro, by this estimation of the
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coefficient. For the conversion between distance in degrees of longitude and kilometres

the custom function lng_dist() was created, see Annex Listing 3. Longitude values

increase from West towards East. The coefficient is −253.58. To better visualise the

indicated relationship between longitude (lng) and base_rent, the maximum differ-
ence in longitude, kilometres is 0.56, 54.3. The degrees of longitude per kilometre is

≈ 0.01031. Given the coefficient this gives a decrease in base_rent per kilometre going

eastwards of≈−2.61 Euro and the maximum difference possible, given the coordinate

range of all listings in the series, is≈−141.96 Euro. These findings support the results
in Section 4.3, Heat Map of Base Rent. There it was observed, that base rent per square

meter has a tendency to increases towards the western part of Hamburg. It seems,

that the here included and with base_rent highly correlated variable square meters

(sqm) does not distort these finding from Section 4.3. There, the influence of sqm on

base_rent was removed by combining it with base_rent to give rent_sqm.

The coefficient of square meters (sqm) is 10.92. It describes an increase in base_rent by

10.92 per additional square meter and could therefore have the predictive importance

indicated by ρ = 82, Figure 4.4. With each floor (floor) higher, on which the apart-

ment is located, so the model estimates the base_rent rises by 8.19 Euro. With each

additional image (number_pics) uploaded for the listing, so the model estimates the

base_rent rises by 4.19 Euro. Going to a higher download speed (dl_speed) category,

is estimated to increases base_rent by 0.12, indicating a low predictive importance

of this variable. Each additional day the listing is online on the platform (time_gap)

raises base rent by 2.65, this gives a basis for the hypothesis that more expensive apart-

ments are longer online on the platform, compared to less expensive ones. The same

was indicated by Figure 4.4. Each increase in the status category with its 4 levels is

estimated to raise base_rent by 68.49. For dynamic the sign of the coefficient is not

what one would expect with a value of −11.7444. This categorical variable has 3 lev-

els [-1,0,1], where a higher value is associated with a better socio-spatial situation

for any neighbourhood, see Section 3.5. Here each increase in dynamic is estimated

to lower base_rent by −11.74. The noise exposure during day (noise_day) lowers

base_rent only very little (−1.21) as the noise level increases from one category to an-

other. An increase in noise level during night (noise_night) is estimated to increase

base_rent by 5.52. Since these noise categories only have 6 categories each and since

less than 10% of all listings are exposed to noise levels above the respective minimum

threshold, these two categories have little impact overall, judging by the estimates.

The positive value of the estimated coefficient for noise_night, if significant, should

be further explored. It could be tested, if a tradeoff between good location of an apart-

ment and higher noise levels, in favour of the location, is the case for a subset of the

listings in the dataset. See Section 4.2 for the analysis of the noise data.
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5.4 XGBoost - Feature Importance

The XGBoost model has a method called feature_importances_ to evaluate the im-

portance of each feature that was passed on to the model as a predictor. To understand

the values, a short explanation of the here relevant structures is given. As explained in

Section 3.2 for each iteration the model adds a new split to either an existing tree that

is not yet fully grown or it creates a new tree with 1 split during the stochastic gradi-

ent descent. Actually, the model adds them sequentially, because it can parallelise this

process [19], but for illustration purposes adding just one tree per iteration is assumed.
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Figure 5.9: The feature importance
plot from the final XGBoost
model with the features on
the y-axis and their respec-
tive scores on the x-axis.
For an explanation of the
variable names, please see
Table 3.5 and Section 4.4.

Since each new split is created to min-

imise the loss function, the splits are cho-

sen for features that account for an "im-

portant part" of the loss score [67]. Since

a greedy algorithm is used during this

process, choosing to split on the respec-

tive chosen feature, yielded the highest

improvement regarding the loss score for

the given iteration [19, 29, 49]. With this

theoretical background the importance

of a feature is equivalent to the number

of splits that were made for it. A feature

with a high number of splits in the model

is one that was regarded as the "most im-

portant" for many iterations during the

greedy search [19]. The ranking of impor-

tance in Figure 5.9 is the result of com-

paring the total number splits made for

each feature in the tree structure. For

the final output the features are sorted

by number of splits made in descending

order. The values in Figure 5.9 are from

the model that resulted from the random

search procedure (see Listing 5.4 for the

specification), since this one had the lowest RMSE score of all tested models. One no-

tices in Figure 5.9, that the latitude (lat) and longitude (lng) variables rank highest in

total splits, each with around 4000 splits. Given the very high number of 1447 trees in

the final model and maximum depth of each tree of 10, a high number of splits made is
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possible in Figure 5.9. Ancillary costs (ancil_costs) and square meters (sqm) have al-

most the same feature importance with (3921,3912) splits each. Then follows variable

time_gap with over 1000 splits less compared to the aforementioned variables with

2771 splits. Interestingly the number of images upload for the listing (number_pics),

while not having a broad variety of values with 90% of all its values (integers) in the

range of 0 to 15 (Table 4.1), ranks high with 2562 splits. Next is variable floor, de-

scribing the floor the apartment is on, with 1666 splits. Again, a variable with limited

value range, seems to be important in combination with other variables. These vari-

ables make up the group of variables with more than 1000 splits. Please see Figure 5.9

for a graphic including the number of splits made for all the predictive features in the

model.
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This chapter reviews the results from Chapter 5 and compares the results of both mod-

els in Section 6.1. The results of the Hyperparameter Optimisation are summarised in

Section 6.2. Finally, the limitations are discussed and possible future work is presented

in Section 6.3.

6.1 Comparison of Results

An unrestricted comparison of the models cannot be made due to the very different
types of operation of the models. It starts with the fact that the Lasso model is a

relatively simple model compared to the XGBoost. There is a trade-off described in the

literate between easy to interpret, simple models that show low accuracy and complex,

hard to interpret models with high accuracy. [15, 42, 43, 88]. Low and high here means

in comparison to the respective other model group in the statement. From (Johansson

et al. 2011), a statement regarding the matter:

In many cases, there is a clear trade-off between accuracy on the one hand

and interpretability on the other. Models exhibiting the former property

are many times more complex and opaque. These models are hard to in-

terpret, while simpler and transparent, that is, interpretable, models may

lack the necessary accuracy. This trade-off has been frequently observed in

the machine learning and predictive modeling communities. [42]

This trade-off is observed here as well between the two models used for prediction.

With the Lasso model the coefficients were well interpretable. It was possible to de-

pict a possible relationship for each regressor with base_rent from analysing the sign

and absolute value of each estimated coefficient. For the XGBoost model this was not

the case. Only a rawmetric [60] was available to evaluate the importance of a regressor

during the stochastic gradient descent. This importance of a feature only states how

important a feature is in the model to lower the loss function during the stochastic

gradient descent [19, 51, 67]. It does not provide information about the relationship
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between the regressor and the dependent variable, whether there is a positive or nega-

tive correlation between the two [45]. Nor is there any information about the estimated

quantitative relationship as obtained in a regression analysis [45, 32].
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Figure 6.1. Plot comparing the residuals of both models. Blue dots designate
the residuals of Lasso and red dots the residuals of XGBoost. On the x-axis
one finds the elements of the validation set, for which the distance between the
predicted value ŷ to the true value y is calculated. This distance is plotted on
the y-axis.

Where the XGboost shines is prediction accuracy. The best RMSE for the Lasso was

190.64 and 115.39 for the XGBoost. The difference in the residuals of both models is

visible in Figure 6.1. The residuals of the Lasso have a wider spread than the ones

of XGBoost. One finds this to be true, especially for large negative residuals, which

describe the instances where the model predicted a value much smaller than the true

value. In this area most of the residuals belong to Lasso, with only few belonging to

XGBoost. The mean of the residuals is almost identical for both models with −3.77 for
XGBoost and −3.97 for Lasso.
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6.2 Hyperparameter Optimisation - Results

Lasso

The Hyperparameter Optimisation for the Lasso involved one test for the only config-

urable parameter alpha (α). The grid search algorithm was given a list with test values

for parameter alpha and the best mean score on the respective test sets was found for

α = 0. During validation the model, using α = 0, did not converge (see Section 5.1).

With α= 0.1 it did converge and since tests showed that the RMSEwas identical on the

training set using this value (see. Annex, Figure 3), α= 0.1 was chosen as the optimal

parameter. The (best) scores for the model then were in RMSE: Training set (baseline)

196.02, training set (grid search) 195.16, validation set 190.64.

XGBoost

The XGBoost model required many tests for the numerous parameters it has. Using a

grid search proved to be computationally expensive and required specific structured

tests. These involved finding good values for each parameter during single parameter

tests first, and then testing, if they are still optimal when combined with a second

parameter. 1458 models were built during the procedure and the baseline RMSE of

144.8 was lowered as a result to 120.58. A randomised search was performed after the

grid search which optimised all parameters it was given as inputs at once. For this the

inputs are distributions for each parameter rather than specific value ranges for each

parameter, as is the case for a grid search. This method gave the lowest RMSE of 115.39

for all procedures and models in this work with 900models built.

6.3 Limitations & Future Work

Limitations

The following limitations were identified for this work. The order of the description

follows the order of the steps taken in this work.

The data, as it was collected from one real estate platform could have a selection bias.

Firstly, it is not known what the true population of rental apartments in Hamburg is.

Secondly, the here found sample might be a subset of the population which shares

common values, this would imply that the sample is not representative of the popula-

tion. For example, the listings in the sample could be concentrated around a few areas

in Hamburg, could have a lower variance overall regarding base rent values and the
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sample distribution of base rent might be different from that of the population or of

another sample taken from a different platform or time range.

Given that an omitted variable bias can not be out ruled, causal relationships between

the regressors and the dependent variable were not assessed in this work.

The interpretation of the coefficients of the Lasso model was carried out only under

the condition that the coefficients are significantly different from 0 and that the as-

sumptions made in advance for the model are true.

Future Work

Because of the aforementioned limitations, the generalisation of the here found results

should be tested further in future work.

Regarding the prediction results, the Lasso model should be compared to other mod-

els, such as Linear Regression or Ridge Regression regarding the RMSE scores of the

three models.

For interpretability a Lasso with an α closer to 1 should be tested and the estimated

coefficients compared to the ones discussed in Section 5.3. Another alternative would

be to use a Linear Regression model and to analyse its coefficients incorporating a sig-

nificance test.

The structure of the final XGBoost model should be further analysed regarding the

high number of n_estimators. This should include the analysis of the splits made for

variables lat and lng in the tree structure, to evaluate whether the model recognises

some sort of spatial autocorrelation. The role of parameter learning_rate in this re-

gard should also be explored further.

More features should be created and added, and it should be tested which ones can aid

even better RMSE results.

Adding a feature that takes into account the date the listing was posted on the plat-

form and streamlining it to become a regressor was under construction but was not

included here. It was difficult to find a suitable aggregated metric associated with the

date a listing was put online. High volatility for comparable time ranges was found for

any metric tested, and more testing would have been needed to find a solution. This

should be further explored in future work.
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Chapter 7 discusses to what extent the results obtained answer the research questions

posed in Chapter 1 and gives a conclusion in this respect. As part of this, the inte-

grated geospatial features are checked for their relevance with regard to the prediction

of the base rent in Section 7.1. Section 7.2 gives the answer to the question posed in

Chapter 4, whether standardising the data can aid better prediction results. It then

presents, the final accuracy scores for the base rent predictions of both models. Subse-

quently, the Hyperparameter Optimisation procedure for both models is discussed in

review and conclusions are drawn.

7.1 Dataset Construction

The integration of the geospatial features into the tabular data with the core vari-

ables from the listings, to form the final dataset, was the first research question. It

was asked regarding how the different data could be combined to give relevant pre-

dictors for the regression. The prerequisite for this is consistent and valid data for

longitude and latitude values of the listings, as acquired from the real estate portal

Immobilienscout24.de [39]. These values were critical for joining all of the spatial fea-

tures, namely the exposure to street noise, distance to the next subway or suburban

train station and status class, dynamic of the statistical area the listing is in. These

features were aligned with the core variables using a spatial join. There were 9480 list-

ings that could be joined from the ≈ 12000 gained by the web scraping algorithm. The

exposure to street noise and the status index had to be extracted from large gml files,

converted to match the crs format of the listings and finally joined. It was here that it

showed, that the GPS data of the listings was mostly valid, causing only a few errors.

These errors occurred during the conversion of values from tuples with float numbers

to Shapely.geometry objects. After that the values had to be converted to numerical

values keeping the categorial order of the original data. Status data variable was given

a high positive value in the Lasso model of 68.49 considering its four unique values.

The status data showed to split the data only little, with almost all listings (and most
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statistical areas in Hamburg [79]) having the second highest status value of the range.

This might have hindered it being even more important in the end. It was a similar

case with the exposure to noise data. Less than 1000 listings were found to be within

any of the areas marked as having a relevant exposure to noise. These two variables

therefore might not have given much predictive input to the models. However, it is

possible that though they separated only few listings with their own categories, they

might have been important separating instances of listings that were otherwise hard to

predict correctly for the remaining regressors alone [45]. Variable distance to the next

subway or suburban train station was converted to a binary variable and a distance of

0.6 kilometres, which is roughly equivalent to a 10 minute walking distance between

listing and the closest station [41, 87], was chosen as threshold. This split the series

into two almost equal parts. The estimated coefficient for it in the Lasso model was

81.99 and therefore one of the highest in the model, for binary variables. The XGBoost

model ranked it low in the upper half of features. It is unclear what that entails re-

garding the relationship of the variable with the dependent variable. It might be that

the feature did not require many splits with its value range of 0 and 1 for the model to

reduce its loss function regarding this feature.

Overall the integration was a success and the features proved to be of relevance to

the models, judging by the available tools that the models give to make such interpre-

tations. This shows that including these features in any prediction of rent prices or

property prices can further refine the given model, either by using already supplied

and clean spatial features (e.g. from official reports) or by means of feature engineer-

ing as was done here.

7.2 Hyperparameter Optimisation - Discussion

Standardisation

The standardisation of the data showed to be of very little importance for Lasso and

it consistently gave worse RMSE scores when used for the XGBoost model, compared

with non standardised data. In the literature the following can be found from (Fried-

man et al. 2010) regarding the ability of the Lasso to scale to both data options:

Our algorithms generalize naturally to the unstandardized case. [30]

This supports the findings in this work, that both data options can be used with the

Lasso. As pointed out in Section 5.3, the coefficients of the continuous variables can

be interpreted easier with non standardised data than with standardised data. This
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comes from the fact that the standardised data do not have their original units any-

more.

Regarding the question, how well the base rent of rental apartments in Hamburg can

be predicted, using the remaining features in the dataset, the final results prove that it

was accomplished with an extremely high accuracy on the validation set.

Using baseline parameters already gave very accurate results for both models. Both

models yielded predictions with a high accuracy and low volatility during the test-

ing.

Another metric, apart from RMSE, commonly used is the explained vari-

ance by the model [74].

The best result of the Lasso was 81%, while the XGBoost reached an ex-

tremely high value of 93% in the final configuration. The optimisation

efforts paid off here, raising the baseline score of 86% by 7%.

Lasso

The choice of α = 0.1 as the optimal value for the Lasso is discussed in the following.

Opinions in the literate are also referred to in the discussion. The choice of α= 0.1was

made purely based on looking for the parameter, that is most likely to give the lowest

RMSE score on the validation set, as indicated by the results of the grid search. In

review the tradeoff between a low shrinkage of coefficients, as is the case with α= 0.1

and the marginal gain in RMSE score might not have been worth it. With α = 0.1 the

RMSE score was less than 1 RMSE unit better compared to the score received, using the

default α= 1. This is illustrated in the Annex, Figure 3. This consideration comes from

the fact that with the chosen alpha the interpretability of the coefficients was degraded

und more uncertain, compared to a model with an α value closer to the default of 1,

which gives the ℓ1-penalty. (Hastie et al. 2016) write:

In the last 10 to 15 years, it has become clear that the ℓ1-penalty has a num-

ber of good properties, which can be summarized as follows: Interpretation

of the final model: The ℓ1-penalty provides a natural way to encourage or

enforce sparsity and simplicity in the solution. [...] [33]

Lasso Conclusion

To conclude the Hyperparameter Optimisation for the Lasso model, the bettering of

the RMSE score was very small, with less than 1 unit between the default α value and

the optimal value of 0.1 on the training set. The optimisation removed some of the
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good characteristics associated with the model and made interpretation of the esti-

mated coefficients more uncertain. A solution might have been to consider another

model, such as Linear Regression or Ridge Regression and compare the RMSE scores

of the three models. For interpretability a Lasso with an α closer to 1 should be tested

and the estimated coefficients compared to the ones discussed in Section 5.3.

XGBoost

A discussion of the way that the grid search was implemented here and a compari-

son of its results to the ones from the random search follows. Opinions in the literate

are also taken into account regarding these topics. Since only 6 out of all parame-

ters for the model (≈ 22) were included in the grid search, its results seemed unlikely

to be optimal. This is given the small fraction of all value combinations explored,

by only including the limited subset of parameters in the search. However, there are

possibly diminishing gains to be had for each further optimisation effort using a grid

search [11]. Refining the grid search is done by lowering the distance between each in-

cluded test value further or by expanding the range of test values or by including more

parameters in the test. These three can also be combined to further refine the search

space. Soon further refinement can become prohibitively computationally expensive

and take more time compared to random search [11]. Here a total of 1458 models

were built during grid search. In their paper, (Bergstra and Bengio 2012) write:

Grid search experiments are common in the literature of empirical machine

learning, where they are used to optimize the hyper-parameters of learning

algorithms. It is also common to perform multistage, multi-resolution grid

experiments that are more or less automated, because a grid experiment

with a fine-enough resolution for optimization would be prohibitively ex-

pensive. [11]

Another problem associated with including only a limited number of parameters in a

test is that possible interdependencies between the parameter values of the parameters

remain unconsidered.

Where single parameter tests showed to be insufficient was for all the subsampling pa-

rameters. This was found after learning that imposing a restriction using a true subset

of all available columns or rows, depending on the parameter, with a single parameter

has repercussions for the other subsampling parameters. To optimise these param-

eters, one has to include all of them in one test, otherwise it can happen, that the

cumulative effect of these parameters gives the final model insufficient sample sizes

to construct the trees in an optimal way [92]. Because of the aforementioned short-

comings of the here implemented grid search a random search was also conducted. A
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limit was set for the random search procedure with a maximum um 900 models that

could be built during testing (see Section 5.1 for more details on the procedure). A

gain over the grid search result was found. The difference however, was much smaller

between the two procedures with 4.19 RMSE units than between baseline and grid

search (24.22). The initial values for the random search were the optimal values result-

ing from the grid search and distributions for the values in the random search were

centred on these values as well. An observation made throughout the optimisation

process is that the number optimal number of trees (n_estimators) was always very

high with 1150 for the grid search and 1447 for the random search. While the learn-

ing rate (learning_rate) was higher than the default value for the grid search (0.2),

it was lower for the random search (0.013686923721625832). Given that the highest

number of splits were made for the latitude (lat) and longitude (lng) variables, with

both having almost identical counts, this might be a sign of the model recognising

some sort of localised spatial autocorrelation (see Section 2.2) and integrating it into

its tree structure. There was no overfitting observed, as a result of these high numbers

for n_estimators.

XGBoost Conclusion

To conclude the Hyperparameter Optimisation for the XGBoost model, the difference
in starting points might lessen the comparability of the two results in terms of how

many models had to be built, to get to the final parameter values with their associ-

ated RMSE scores. However, as mentioned before, from the total number of models

built for the random search (900), a total of give or take 550 models more could have

been built, until the total number built for this procedure matches the one of the grid

search. This gap is, at least in this work, in favour of the random search being more

efficient and more accurate than the grid search. A factor that plays an important role

is the experience level of the user however [11, 45]. Had the author known better what

parameters to include in the grid search and what value ranges to pick, the results

could have come from building less models during the grid search. To some extend

the same is true for the random search, as the choice of which distributions to pick

for the sampling of parameter values, during random search, becomes more refined,

the results might come after fewer iterations here as well. With the grid search this

experience level of the user factor is more important than for the random search with the

many choices that have to be made during the process of optimisation. Random search

given its fewer input choices does not profit as much from this [11].

For both models no overfitting was observed by the comparison of RMSE scores be-

tween training and validation sets.
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This chapter is the final one of this work. It reviews the methods and the thinking

process used during the here proposed process, in Section 8.1. Section 8.2 concludes

this work with the identification of economic sectors and fields in which the process

presented here can be applied and for which it is therefore relevant. Exemplarily,

possible practical applications are also mentioned.

8.1 Review

In review the results proved that it is possible to combine core variables describing

rental apartments listed on a real estate platform with independent geospatial features

from different data sources. During the process it was shown how a web scraping algo-

rithm was used to collect the core variables. The importance of cleaning and carefully

joining these core variables with the geospatial features to retain existing and to create

new consistent and valid features was emphasised. The understanding of the data and

based on it, the selection of features with either a high predictive importance or a high

importance for interpretability of the final model was included. New findings were

iteratively integrated into the process and suitable solutions sought and implemented

within the context of grid search and random search procedures. The best values re-

garding the prediction accuracy were extremely high in the end. However, little atten-

tion has been paid to the absolute value of accuracy metrics. Rather, the focus was on

a methodically clean and structured approach and continued critical thinking. This

also included the statements made being based on solid foundations. The premise was

made that this approach should always be applied, regardless of whether very good

results were achieved in the predictions from the outset. The focus then, was on doing

each step of the process well, not primarily the outcome.

68



8 Summary

8.2 Applicability of the Process

Going back to the quotation from the newspaper article published in the International

Business Times UK in Chapter 1, (Deep learning and big data 2017):

In the world of finance, the new data paradigm entails applying predictive

analytics to new datasets that are collected from non-traditional financial

data sources to discover novel and consistently predictive features, and po-

tentially useful patterns about the entity in question beyond what is easily

available from traditional financial data sources. [24]

The need of the financial industry, as outlined in this quotation, matches the here

described process for the most part. Therefore, several use cases in the financial sector

should be found, where this process is of relevance. While the statement is clearly

made for the financial industry in the original source, the author believes that it is

applicable in other sectors as well. What characterises this sector, as described in the

paper (Porter and Millar 1985), is:

The Banking and newspaper industries have a high information-technology

content in both product and process. [58]

While the paper is dated, its statement regarding the Banking industry is still valid.

With this in mind the here described process should be of relevance to other sec-

tors with similar characteristics. Potential sectors, where the proposed process can

be applied to solve problems that have a similar structure to the one described in the

quotation from article (Deep learning and big data 2017), are: 1. Banking & Finance,

reasoning as explained in the preceding paragraphs. 2. Marketing, for example Re-

tail. The first step would be to adapt the process to the business needs. An example

would be predicting demand incorporating external factors such as weather and lo-

cation of a store. 3. Healthcare, for example to find factors relevant for the develop-

ment of personalised medication and treatments and to make a prediction of patient

response using a well interpretable model in this context. 4. Policy, for example to

understand socio-spatial developments in the different neighbourhoods of the city. A

possible task could be to find relevant factors for the prediction of which investment in

public goods gives the highest utility for the inhabitants of a city, incorporating spatial

features. 5. Urban Development, for example to build more efficient cities regarding

travel durations within the city. A possible task could be to identify factors important

to the travel durations and predict the durations between important locations within

the city. 6. Research, for example in fields such as Econometrics, Sociology or Environ-

mental Sciences.
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Annex

German Version of the Sozialmonitoring Bericht 2018 Quote in Section 3.5

Der Sozialmonitoring-Bericht analysiert und beschreibt jährlich sozialräum-

liche Entwicklungen innerhalb der Freien und Hansestadt Hamburg. Ziel

ist es, sozialräumliche Unterschiede innerhalb der Stadt zu erkennen und

potenziell unterstützungsbedürftige Quartiere zu identifizieren. Hierfür

erfolgt eine kleinräumige Analyse ausgewählter Indikatoren auf der Ebene

der 941 Statistischen Gebiete der Stadt Hamburg. So können Teilräume

beobachtet, miteinander verglichen und Statistische Gebiete identifiziert

werden, in denen ggf. kumulierte Problemlagen zu vermuten sind. [79]

German Version of the Deutsche Bank Research Quote in Section 4.1

In Hamburg stiegen dieWohnungspreise im Bestand seit dem Jahr 2009 um

mehr als 70%. DieMietenwachsen imVergleich zu den anderenMetropolen

unterdurchschnittlich. Die relativ rege Bauaktivität und die stabile Ein-

wohnerzahl dämpfen die Mietdynamik. Die Niedrigzinsen könnten de-

shalb der Haupttreiber für Hamburgs Wohnungs- und Hauspreise sein.

Entsprechend könnte die Zinssensitivität höher sein als in anderenMetropolen.

In unserem Basisszenario erwartenwir 2018 nur leicht steigendeHypotheken-

zinsen. Daher dürften in Hamburg die Haus- und Wohnungspreise im

laufenden Jahr weiter kräftig zulegen. [52]
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Annex

Table 1. The table shows all variables that were collected from the web scraping. Note
that the json duplicates of some variables were collected to cross check the values
collected from the respective counter part or to fill in missing values where one of the
pair did not return a value, but the other one did.

Variable Description of what it measures

kitchen Listing has a fitted kitchen yes/no

json_hasKitchen Listing has a fitted kitchen yes/no from the json data

elevator Building has an elevator yes/no

json_lift Building has an elevator yes/no from the json data

base_rent The base rent of the listing

json_baseRent The base rent of the listing from the json data

sqm The living space of the apartment in (m2)

json_livingSpace The living space of the apartment in (m2) from the json data

ancil_costs Costs that are not included in the base rent

total_rent Total rent per month consisting of base rent + ancillary costs

lat Latitude value of the listing

lng Longitude value of the listing

gps The combined data from lng and lat as tuples in the form of (lng,lat)

str Street and number of the listing

use_a Usable area associated with the listing

no_room The number of rooms the listing has

no_bed The number of bedrooms the listing has

no_bath The number of bathrooms in the listing

plz The area code of the listing

regio Raw data column that contains area code, city and neighbourhood of the listing

parking Describes the type and number of parking spots that are associated with the listing

online_since The date the listing was put posted

offline_since The date the listing was taken off the platform

time_gap The gap in days between online_since and offline_since

const The year the building was constructed

json_yearConstructed The year the building was constructed from the json data

cond The condition the listing is in

json_condition The condition the listing is in from the json data

json_interiorQual The interior quality of the listing from the json data

type The type of the listing

floor The floor the listing is on inside the building

heating_type The heating type of the listing

json_heatingType The type of heating from the json data

rel_en The relevant energy sources of the listing

fin_en Amount of energy needed per month

hcost The heating costs per month

balcony Listing has a balcony yes/no

json_balcony Listing has a balcony yes/no from the json data

json_number_pics The number of images uploaded for the listing from the json data

json_telekomDownloadSpeed The internet download speed (Provider is Telekom) from the json data in mbit/s

json_telekomUploadSpeed The internet upload speed (Provider is Telekom) from the json data in mbit/s

json_electricityBasePrice The base price of electricity for the listing

json_electricityKwhPrice The electricity Kwh price for the listing from the json data

cellar The listing has a basement compartment yes/no

json_cellar The listing has a basement compartment yes/no from the json data

json_petsAllowed Pets are allowed in the listing yes/no from the json data

pets Pets are allowed in the listing yes/no

city_neigh The city and neighbourhood that the listing is in

json_totalRent Total rent per month consisting of base rent + ancillary costs from the json data

json_firingTypes The firing type used in the listing for heating

json_yearConstructedRange The range in which the building of the listing was constructed in from the json data
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Figure 1. The relationship between base rent (Eur) on the x axis and its fre-
quency by noise level during night (dB (A)) on the y axis. The noise level
increases from top to bottom.
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Figure 2. Box Plot of the
variable rent_sqm showing
the value on the y-axis in Euro
per square meter .
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Table 2. Results of comparing the distributions of the variables with
the Exponential Distribution in order to check for heavy tails. The Ex-
ponential Distribution gives the minimum requirements for the length
of a tail, in order for a distribution to be possibly ’heavy tailed’ (See
4.2). Thus, results indicating that a power distribution is not a bet-
ter fit than an Exponential Distribution make it highly unlikely for the
distribution to have a heavy tail. In the tuple the sign of first element
indicates whether a power distribution (> 0) is is a better fit or a
non power distribution (< 0). H0 is that a non power distribution is
the better fit. The second element is the Pearson Correlation Coef-
ficient. Here the significance level was set to 5%, so values smaller
0.05 here indicate that H0 should be dismissed. The value 0 indicates
no likelihood for either direction was the result.

Variable (Log-likelihood Ratio, p-Value)

kitchen (0, 1)

elevator (0, 1)

ancil_costs (0.8633620531244639, 0.38793843629339375)

lat (nan, nan)

lng (-894.2756317300255, 0.0)

base_rent (2.863144900365252, 0.00419458690403231)

sqm (-0.9036353423406421, 0.36618879440105934)

no_room (-1.212361705403381, 0.2253739530242902)

balcony (0, 1)

floor (3.53516182742496, 0.000407525499472497)

number_pics (-1.886985742467091, 0.05916224334355868)

dl_speed (-228.043408947026, 0.0)

ul_speed (-125.44752544664827, 0.0)

time_gap (-15.833074808018742, 1.840051927320293e-56)

status (-31.145734011188, 5.793603111328023e-213)

dynamic (0, 1)

min_train (-2.310867364093777, 0.020840182209689636)

min_subway (-33.3742635115118, 3.239950438616581e-244)

smaller_0.6 (0, 1)

const (nan, nan)

81



Annex

Protocols of Grid Search
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Figure 3. Plot showing the RMSE values (y-axis) for the
range of tested alpha values (x-axis) during the grid search.

XGBoost

Baseline

Listing 1: Output of testing predictions with the default parameters on non standardised and stan-
dardised data.

# B a s e l i n e

# Non s t a n d a r d i s e d data

# R e s u l t s
The RMSE o f the model i s : (145 .74874692689227)

# St a n d a r d i s e d data

# R e s u l t s
The RMSE o f the model i s : (144 .80089959581352)
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Custom Conversion Functions

Listing 2: Custom function used to convert the latitude values to kilometres. Since the distance
between a fixed distance in degrees between 2 latitude values is constant the distance
between two latitude values only has to be multiplied by the constant.

import numpy as np

de f l a t _ d i s t ( l a t 1 , l a t 2 ) :
d i f f = np . abs ( l a t 1 − l a t 2 )
d i f f = 111 .19 ∗ d i f f # con s t a n t = 111 .19
p r i n t ( ’The difference in Kilometres is ’ + s t r ( d i f f ) + ’ km’ )
r e t u r n ( d i f f )

Listing 3: Custom function used to convert the distance from degrees of longitude to kilometres.
Since the distance between a fixed difference in degrees of longitude is not constant
factor c has to be calculated for the actual conversion. Here the median of all latitude
values found in the data series is used for the calculation of c.

import numpy as np

de f l n g_d i s t ( lng1 , lng2 , l a t ) :

# app rox ima t e v a l u e o f the c i r c um f e r e n c e o f the Ea r th i n km
r = 9367

# c a l c u l a t i o n o f f a c t o r c , as d i s t a n c e between l o n g i t u d e v a l u e s ←↩
v a r i e s by l a t i t u d e

c = r ∗ np . cos ( l a t ∗ 0 .0174533)

# the a c t u a l d i s t a n c e c a l c u l a t i o n
d i s t = c ∗ np . abs ( ( l n g2 ∗ 0 .0174533) − ( l n g1 ∗ 0 .0174533) )
p r i n t ( ’The difference in Kilometres between the longitude values ←↩

is ’ + ’\n’ + s t r ( d i s t ) + ’ km’ )
r e t u r n ( d i s t )
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Source of Listing 4:

https://github.com/dmlc/xgboost/blob/master/python-package/xgboost/core.py#

L953][1]

Listing 4: Underlying code of the get_fscore method.

de f g e t_ f s co r e ( s e l f , fmap=’’ ) :
"""Get f e a t u r e impo r t anc e o f each f e a t u r e .
Pa ramete r s
−−−−−−−−−−
fmap : s t r ( o p t i o n a l )

The name o f f e a t u r e map f i l e
"""
t r e e s = s e l f . get_dump ( fmap ) ## dump a l l t he t r e e s to t e x t
fmap = {}
f o r t r e e i n t r e e s : ## loop th rough the t r e e s

f o r l i n e i n t r e e . s p l i t ( ’\n’ ) : # t e x t p r o c e s s i n g
a r r = l i n e . s p l i t ( ’[’ )
i f l en ( a r r ) == 1 : # t e x t p r o c e s s i n g

c o n t i n u e
f i d = a r r [ 1 ] . s p l i t ( ’]’ ) [ 0 ] # t e x t p r o c e s s i n g
f i d = f i d . s p l i t ( ’<’ ) [ 0 ] # s p l i t on the ←↩

g r e a t e r / l e s s ( f i n d v a r i a b l e name )

i f f i d not i n fmap : # i f the f e a t u r e i d hasn ’ t been seen ←↩
y e t
fmap [ f i d ] = 1 # add i t

e l s e :
fmap [ f i d ] += 1 # e l s e i n c r emen t i t

r e t u r n fmap # r e t u r n the fmap , wh ich has the ←↩
coun t s o f each t ime a v a r i a b l e was s p l i t on

\ e n d i n p u t
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